South East New Territories (SENT) Landfill Extension **Quarterly Environmental Monitoring & Audit Report No.13** June 2022 # **ERM** 2509, 25/F One Harbourfront 18 Tak Fung Street Hunghom, Kowloon Hong Kong T: 2271 3000 F: 3015 8052 www.erm.com # South East New Territories (SENT) Landfill Extension # **Environmental Certification Sheet** EP-308/2008/B and FEP-01/308/2008/B # Reference Document/Plan Ouarterly Environmental Monitoring & Audit Report No. 13 for South East New Territories (SENT) Landfill Document/Plan to be Certified/Verified: Extension 7 June 2022 Date of Report: # Reference EM&A Manual Requirement EM&A Manual: Section 11.4 The quarterly EM&A summary report shall be prepared by the ET, certified by the ET Leader and verified by the IEC. The quarterly EM&A summary report should contain all information listed under Section 11.4 of the approved EM&A Manual. #### **ET Certification** I hereby certify that the above referenced document/plan complies with the above referenced EM&A Manual requirement. Wardist J. Frank Wan, Environmental Team Leader: (ERM Hong-Kong, Limited) Date: 7 June 2022 #### **IEC Verification** I hereby verify that the above referenced document/plan complies with the above referenced EM&A Manual requirement. Claudine Lee, Independent Environmental Checker: (Meinhardt Infrastructure and **Environment Limited**) Date: 9 June 2022 # **South East New Territories (SENT) Landfill Extension** # **Quarterly Environmental Monitoring & Audit Report No.13** # **Environmental Resources Management** 2509, 25/F, One Harbourfront 18 Tak Fung Street Hunghom, Kowloon Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 3015 8052 E-mail: post.hk@erm.com http://www.erm.com | Client: | | Projec | ct No: | | | | |---|---|--------------|-----------------------------|--------------------|---|--| | Green Valley Landfill Ltd. | | | 0465169 | | | | | Summary: | | Date: | | | | | | | | | ne 2022 | | | | | | | Appro | ved by: | | | | | This document presents the Quarterly EM&A Report No.13 for South East New Territories (SENT) Landfill Extension | | No | archit | J. | | | | | | Fran | k Wan | | | | | | | Partn | 0 | Quarterly EM&A Report No.13 | AL | FW | FW | 7 Jun 22 | | | Revision | Description | Ву | Checked | Approved | Date | | | | has been prepared by Environmental Resources Management the trading name
ng-Kong, Limited', with all reasonable skill, care and diligence within the terms | Distribution | | | | | | | act with the client, incorporating our General Terms and Conditions of Business count of the resources devoted to it by agreement with the client. | | | | | | | and taking a | ccount of the resources devoted to it by agreement with the chent. | | Internal | | | | | We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. | | | Public | | | | | This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk. | | | Confide | ntial | | | | relies on the report at their own risk. | | | ISO
900
Quali
Mana | ty Oc
gement He | 0
5001
cupational
alth and Safety
inagement | | # **CONTENTS** | EXECUT | TIVE SUMMARY | 1 | |---------------|---|------------| | 1 | INTRODUCTION | 1 | | 1.1 | BACKGROUND | 1 | | 1.2 | PROJECT DESCRIPTION | 1 | | 1.3 | SCOPE OF THE EM&A REPORT | 2 | | 1.4 | PROJECT ORGANISATION | 2 | | 1.5 | SUMMARY OF CONSTRUCTION WORKS | 3 | | 1.6 | SUMMARY OF EM&A PROGRAMME REQUIREMENTS | 5 | | 1.7 | STATUS OF STATUTORY ENVIRONMENTAL COMPLIANCE WITH THE | | | | ENVIRONMENTAL PERMIT | 6 | | 1.8 | STATUS OF OTHER STATUTORY ENVIRONMENTAL REQUIREMENTS | 6 | | 2 | EM&A RESULTS | 8 | | 2.1 | AIR QUALITY MONITORING | 8 | | 2.2 | NOISE MONITORING | 8 | | 2.3 | WATER QUALITY MONITORING | 10 | | 2.4 | LANDFILL GAS MONITORING | 20 | | 2.5 | LANDSCAPE AND VISUAL MONITORING | 26 | | 2.6 | EM&A SITE INSPECTION | 26 | | 2.7 | Waste Management Status | 29 | | 2.8 | IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES | 30 | | 2.9 | SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMAN | ICE | | | LIMIT | 30 | | 2.10 | SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL | | | | PROSECUTIONS | 30 | | 3 | CONCLUSION AND RECOMMENDATION | 31 | #### **ANNEXES** - ANNEX A WORK PROGRAMME - ANNEX B ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE - ANNEX C MONITORING SCHEDULE FOR THIS REPORTING PERIOD - ANNEX D AIR QUALITY - ANNEX D1 24-HOUR TSP MONITORING RESULTS - ANNEX D2 EVENT AND ACTION PLAN FOR AIR QUALITY MONITORING - ANNEX D3 METEOROLOGICAL DATA - ANNEX D4 ODOUR MONITORING RESULTS - ANNEX D5 THERMAL OXIDIZER, LANDFILL GAS FLARE AND LANDFILL GAS - **GENERATOR STACK EMISSION MONITORING RESULTS** - ANNEX D6 AMBIENT VOCS, AMMONIA AND H2S MONITORING RESULTS - ANNEX E NOISE - ANNEX E1 NOISE MONITORING RESULTS - ANNEX E2 EVENT AND ACTION PLAN FOR NOISE MONITORING - ANNEX F WATER QUALITY - ANNEX F1 SURFACE WATER QUALITY MONITORING RESULTS - ANNEX F2 EVENT AND ACTION PLAN FOR WATER QUALITY MONITORING - ANNEX F3 LEACHATE LEVELS MONITORING RESULTS - ANNEX F4 EFFLUENT QUALITY MONITORING RESULTS - ANNEX F5 GROUNDWATER MONITORING RESULTS - ANNEX F6 INVESTIGATION REPORTS OF ENVIRONMENTAL QUALITY LIMIT EXCEEDANCE - ANNEX G LANDFILL GAS - ANNEX G1 LANDFILL GAS MONITORING LOCATIONS FOR SERVICE VOIDS, UTILITIES AND MANHOLES ALONG THE SITE BOUNDARY AND WITHIN THE SENTX SITE - ANNEX G2 LANDFILL GAS MONITORING RESULTS - ANNEX G3 EVENT AND ACTION PLAN FOR LANDFILL GAS MONITORING - ANNEX H CUMULATIVE STATISTICS ON EXCEEDANCES, ENVIRONMENTAL COMPLAINTS, NOTIFICATION OF SUMMONS AND STATUS OF PROSECUTIONS #### **EXECUTIVE SUMMARY** The SENT Landfill Extension (SENTX) forms an integral part in the Strategic Plan in maintaining the continuity of landfill capacity in the Hong Kong for the cost-effective and environmentally satisfactory disposal of waste. ERM-Hong Kong, Limited (ERM) is commissioned to undertake the role of Environmental Team (ET) for the construction, operation/restoration and aftercare of SENTX Project ("the Project") in accordance with the requirements specified in the Environmental Permit (EP), updated Environmental Monitoring and Audit (EM&A) Manual, the approved Environmental Impact Assessment (EIA) Report of the Project taking account of the latest design and other relevant statutory requirements. The construction (not including works related to site clearance and preparation) of the Project commenced on 2 January 2019. This Quarterly EM&A report presents the EM&A works carried out during the period from 1 January to 31 March 2022 for the Project in accordance with the updated EM&A Manual. # **Exceedance of Action and Limit Levels for Air Quality** No exceedance of Action and Limit Levels for operation/ restoration phase air quality monitoring was recorded in the reporting period. #### **Exceedance of Action and Limit Levels for Noise** No exceedance of Action and Limit Levels for operation/ restoration phase noise monitoring was recorded in the reporting period. # **Exceedance of Action and Limit Levels for Water Quality** Three exceedance of the Limit Level for groundwater (Chemical Oxygen Demand (COD)) were recorded for water quality impact monitoring in the reporting period. The groundwater (COD) exceedances at MWX 4 and MWX-6 on 15 February 2022 and groundwater (COD) exceedance at MWX 4 on 15 March 2022 were considered non Project-related. ## **Exceedance of Action and Limit Levels for Landfill Gas** No exceedance of Action and Limit Levels for operation/ restoration phase landfill gas monitoring was recorded in the reporting period. # **Environmental Complaints, Summons and Prosecutions** There were no complaints, notification of summons or prosecution recorded in the reporting period. # **Reporting Change** There was no reporting change in the reporting period. ### 1 INTRODUCTION #### 1.1 BACKGROUND The SENT Landfill Extension (SENTX) forms an integral part in the Strategic Plan in maintaining the continuity of landfill capacity in the Hong Kong for the cost-effective and environmentally satisfactory disposal of waste. The *Environmental Impact Assessment (EIA) Report* and the associated *Environmental Monitoring and Audit (EM&A) Manual* for the construction, operation, restoration and aftercare of the SENTX (hereafter referred to as "the Project") have been approved under the *Environmental Impact Assessment Ordinance (EIAO)* in May 2008 (Register No.: AEIAR-117/2008) (hereafter referred to as the approved EIA Report) and an Environmental Permit (EP-308/2008) (EP) was granted by the Director of Environmental Protection (DEP) on 5 August 2008. Since then, applications for Variation of an Environmental Permit (No. VEP-531/2017) were submitted to EPD and the Variation of Environmental Permits (EP-308/2008/A and EP-308/2008/B) were granted on 6 January 2012 and 20 January 2017, respectively, as the Hong Kong SAR Government has decided to reduce the scale of the design scheme of SENTX assessed in the approved EIA Report and SENTX will only receive construction waste. In May 2018, a Further Environmental Permit (FEP) (FEP-01/308/2008/B) was granted to the SENTX's contractor, Green Valley Landfill, Limited (GVL). ERM-Hong Kong, Limited (ERM) and Meinhardt Infrastructure and Environment Limited (Meinhardt)
are commissioned to undertake the roles of Environmental Team (ET) and the Independent Environmental Checker (IEC), respectively, to undertake the EM&A activities for the Project in accordance with the requirements specified in the EP, updated EM&A Manual (1), approved EIA Report (2) taking account of the latest design and other relevant statutory requirements. ### 1.2 PROJECT DESCRIPTION The SENTX is a piggyback landfill, occupying the southern part of the existing SENT Landfill (including its infrastructure area) and 13 ha of Tseung Kwan O (TKO) Area 137. A layout plan of the SENTX is shown in *Figure 1.1*. Under the latest design, the SENTX has a net void capacity of about 6.5 Mm³ and provides an additional lifespan of about 6 years, commencing operation upon exhaustion of the SENT Landfill. The SENTX will receive construction waste only. ⁽¹⁾ ERM (2018). South East New Territories (SENT) Landfill Extension: Environmental Monitoring & Audit Manual ⁽²⁾ ERM (2007). South East New Territories (SENT) Landfill Extension – Feasibility Study: Environmental Impact Assessment Report The key implementation milestones of the Project are indicatively summarised in *Table 1.1*. The construction works and operation of the Project commenced on 2 January 2019 and 21 November 2021, respectively. Table 1.1 Estimated Key Dates of Implementation Programme | Key Stage of the Project | Indicative Date | |--|------------------| | Start construction | 2 January 2019 | | Commissioning of new infrastructure facilities | 2020 | | Demolition of existing infrastructure facilities | 2021 | | Start waste intake at SENTX | 21 November 2021 | | Estimated exhaustion date of SENTX | 2027 | | End of aftercare for SENTX | 2057 | The major construction works of the SENTX includes: - Site formation at the TKO Area 137 and the existing infrastructure area at SENT Landfill; - Construction of surface and groundwater drainage systems; - Construction of the leachate containment and collection systems; - Construction of new leachate and landfill gas treatment facilities, site offices, maintenance yards at the new infrastructure area; - Construction of new pipelines to transfer the leachate and landfill gas collected from the existing SENT Landfill to the treatment facilities at the new infrastructure area; - Construction of the site access and new waste reception facilities; and - Demolition of the facilities at the existing SENT Landfill infrastructure area. # 1.3 Scope of the EM&A Report This is the Quarterly EM&A Report for the Project which summarises the key findings of the EM&A programme during the reporting period from 1 January to 31 March 2022 for the construction and operation works. # 1.4 PROJECT ORGANISATION The organisation structure of the Project is presented in *Figure 1.2*. Figure 1.2 Organisation Chart Contact details of the key personnel are summarized in *Table 1.2* below. Table 1.2 Contact Information of Key Personnel | Party | Position | Name | Telephone | |---|-----------------|-----------|-----------| | Contractor
(Green Valley Landfill
Limited) | Project Manager | Carl Lai | 2706 8829 | | Environmental Team (ET) (ERM-Hong Kong, Limited) | ET Leader | Frank Wan | 2271 3152 | | Independent Environmental
Checker (IEC)
(Meinhardt Infrastructure
and Environment Limited) | IEC | W.K. Chiu | 2858 0738 | ### 1.5 SUMMARY OF CONSTRUCTION WORKS The programme of the construction is shown in *Annex A*. As informed by the Contractor, the major works carried out in this reporting period include: ### January 2022 - Rectification of defects at Landfill Gas (LFG) Plant, Leachate Treatment Plant (LTP), infrastructure area and waste reception area; - Rectification of defects for underground utilities and pipe; - Construction of pump house 4X; - Construction of MSE wall; - Site formation for Cell 4X; - Liner works at Cell 4X; and - Maintenance and improvement of temporary surface water drainage. # February 2022 - Rectification of defects at LFG Plant, LTP, infrastructure area and waste reception area; - Rectification of defects for underground utilities and pipe; - Construction of MSE wall; - Site formation for Cell 4X; - Liner works at Cell 4X; - Construction of perimeter channel along Western bund of Cell 4X; and - Maintenance and improvement of temporary surface water drainage. # March 2022 - Rectification of defects at LFG Plant, LTP, infrastructure area and waste reception area; - Landscaping works at infrastructure area; - Rectification of defects for underground utilities and pipe; - Construction of MSE wall; - Construction of retaining wall at Western boundary planting; - Liner works at Cell 4X; - Construction of perimeter channel X10A and X10C along Western bund of Cell 4X; - Maintenance and improvement of temporary surface water drainage; and - Utilities installation along Western bund of Cell 4X. The implementation schedule of the mitigation measures recommended in the Updated EM&A Manual is presented in *Annex B*. # 1.6 SUMMARY OF EM&A PROGRAMME REQUIREMENTS The status for all environmental aspects are presented in *Table 1.3*. The EM&A requirements remained unchanged during the reporting period. Table 1.3 Summary of Status for the Environmental Aspects under the Updated EM&A Manual | Parameters | Status | |--|---| | Air Quality | | | Baseline Monitoring | The results of baseline air quality monitoring were reported in Baseline Monitoring Report and Pre-operation Baseline Monitoring Report and submitted to EPD under EP Condition 3.3 | | Impact Monitoring | On-going | | Noise | | | Baseline Monitoring | The results of baseline noise monitoring were reported in Baseline Monitoring Report and submitted to EPD under EP Condition 3.3 | | Impact Monitoring | On-going On-going | | Water Quality | | | Baseline Monitoring | The results of baseline surface water quality monitoring were reported in Baseline Monitoring Report and Pre-operation Baseline Monitoring Report and submitted to EPD under EP Condition 3.3 | | Impact Monitoring | On-going | | Landfill Gas | | | Impact Monitoring | On-going | | Waste Management | | | Waste Monitoring | On-going | | Landscape and Visual | | | Baseline Monitoring | The results of baseline landscape and visual monitoring were reported in Baseline Monitoring Report and submitted to EPD under EP Condition 3.3 | | Construction Phase Audit | On-going On-going | | Site Environmental Audit | | | Regular Site Inspection | On-going | | Complaint Hotline and Email
Channel | On-going | | Environmental Log Book | On-going On-going | Taking into account the operation works, impact monitoring of air quality, noise, water quality, landfill gas and waste management were carried out in the reporting period. The impact monitoring schedule of air quality, noise, water quality and landfill gas monitoring are provided in *Annex C*. The EM&A programme also involved environmental site inspections and related auditing conducted by the ET for checking the implementation of the required environmental mitigation measures recommended in the approved EIA Report and relevant EP submissions. To promote the environmental awareness and enhance the environmental performance of the contractors, environmental trainings and regular environmental management meetings were conducted during the reporting period, which are summarised as below: Three environmental management meetings were held with the Contractor, ER, ET, IEC and EPD on 20 January, 24 February and 24 March 2022; and - Environmental toolbox trainings on the following topics were provided by the Contractor to the workers: - Site Practice for Waste Reduction in Construction Industry on 4 January 2022; - Clean Recycling on 18 January 2022; - Quality Powered Mechanical Equipment (QPME) on 9 February 2022; - Good Vehicle Maintenance Practices on 23 February 2022; - Chemical Waste Handling on 9 March 2022; and - Green Procurement on 23 March 2022. # 1.7 STATUS OF STATUTORY ENVIRONMENTAL COMPLIANCE WITH THE ENVIRONMENTAL PERMIT The status of statutory environmental compliance with the EP conditions under the EIAO, submission status under the EP and implementation status of the recommended mitigation measures are presented in *Table 1.4*. Table 1.4 Status of Submissions required under the EP and Implementation Status of the recommended Mitigation Measures | EP
Condition | Submission/Implementation Status | Status | |-----------------|---|---| | 2.3 | Management Organisation of Main
Construction Companies | Submitted and accepted by EPD. | | 2.4 | Setting up of Community Liaison Group | Community Liaison Group was set up. | | 2.5 | Submission of Detailed Landfill Gas
Hazard Assessment Report | Submitted, and accepted by EPD on 10 January 2019. | | 2.6 | Submission of Restoration and Ecological Enhancement Plan | Submitted to EPD on 28 June 2019. | | 2.7 | Setting up of Trial Nursery | Trial Nursery works was commenced on 28 August 2019. | | 2.8 | Advance Screen Planting | Advance Screen Planting works were completed on 28 June 2019. | | 2.9 | Provision of Multi-layer Composite Liner
System | Under implementation. | # 1.8 STATUS OF OTHER STATUTORY ENVIRONMENTAL REQUIREMENTS The environmental licenses and permits (including EP, *Water Pollution Control Ordinance* (WPCO) discharge license, registration as a chemical waste producer, and construction noise permit) that are valid in the reporting period are presented in *Table 1.5*. No non-compliance with environmental statutory
requirements was identified. Table 1.5 Status of Statutory Environmental Requirements | Description | Ref No. | Status | |---|----------------------------------|---| | Environmental Permit | EP-308/2008 | Granted on 5 August 2008 | | Variation of Environmental Permit | EP-308/2008/A | Granted on 6 January 2012 | | | EP-308/2008/B | Granted on 20 January 2017 | | Further Environmental Permit | FEP-01/308/2008/B | Granted on 16 May 2018 | | Water Discharge License under WPCO (Permit Holder: GVL) | Licence No.: WT00036269-
2020 | Validity from 21 June 2020
to 30 June 2022 | | Billing Account for Disposal of Construction Waste | Chit Account Number: 5001692 | Approved on 28 December 2005 | | Registration as a Chemical Waste
Producer (Permit Holder: Chun Wo) | 5213-839-C3507-10 | Issued on 23 August 2018 | | Registration as a Chemical Waste
Producer (Permit Holder: REC) | 5518-839-R2289-06 | Issued on 24 October 2019 | | Construction Noise Permit (Permit Holder: GVL) | GW-RE0990-21 | Validity from 6 October
2021 to 4 January 2022 | | | GW-RE1316-21 | Validity from 5 January
2022 to 14 June 2022 | | Construction Noise Permit (Permit Holder: Paul Y.) | GW-RE1138-21 | Validity from 16 November
2021 to 15 February 2022 | | | GW-RE0278-22 | Validity from 31 March
2022 to 22 September 2022 | #### 2 EM&A RESULTS The EM&A programme for the Project required environmental monitoring for air quality, noise, water quality and landfill gas as well as environmental site inspections for air quality, noise, water quality, landfill gas, waste management, and landscape and visual impacts. The EM&A requirements and related findings for each component are summarised in the following sections. # 2.1 AIR QUALITY MONITORING # 2.1.1 Dust Monitoring Monitoring Requirements and Equipment According to the updated EM&A Manual of the Project, impact dust monitoring (in term of Total Suspended Particulates (TSP)) was carried out at the four designated locations along the site boundary (i.e. AM1, AM2, AM3 and AM4) during the operation/restoration phase, at a 6-day interval. The Action and Limit Levels of the air quality monitoring is provided in *Table 2.1* below. Table 2.1 Action and Limit Levels for 24-hour TSP | Monitoring Station | Action Level | Limit Level | |---|------------------------|------------------------| | AM1 - SENTX Site Boundary (North) | | | | AM2 - SENTX Site Boundary (West, near DP3) | 2(0 | 2(0 | | AM3 - SENTX Site Boundary (West, near RC15) | 260 μg m- ³ | 260 μg m- ³ | | AM4 - SENTX Site Boundary (West, near EPD building) | | | High volume air samplers (HVSs) in compliance with the specifications listed under Section 3.2.2 of the updated EM&A Manual were used to measure 24-hour TSP levels at the CEDD dust monitoring stations. The HVSs were calibrated upon installation and thereafter at bi-monthly intervals to check the validity and accuracy of the results. The equipment used in the impact air quality monitoring programme and monitoring locations are summarised in *Table 2.2* and illustrated in *Figure 2.1* respectively. Table 2.2 Dust Monitoring Details | Monitoring Station | Location | Parameter | Frequency and Duration | Monitoring
Dates | Equipment | |--------------------|---|----------------|------------------------|-------------------------------|------------------------------| | AM1 | SENTX Site Boundary (North) | 24-hour
TSP | Once every 6
days | 6, 12, 18, 24,
30 Jan 2022 | Tisch TE-5170
(S/N: 1190) | | AM2 | SENTX Site Boundary
(West, near DP3) | | | 5, 11, 17, 23
Feb 2022 | Tisch TE-5170
(S/N: 1047) | | AM3 | SENTX Site Boundary
(West, near RC15) | | | 1, 7, 13, 19, | Tisch TE-5170
(S/N: 1258) | | AM4 | SENTX Site Boundary
(West, near EPD
building) | | | 25, 31 Mar
2022 | Tisch TE-5170
(S/N: 1101) | Monitoring Schedule for the Reporting Period The schedule for air quality monitoring during the reporting period is provided in *Annex C*. Results and Observations The 24-hour TSP monitoring results are summarised in *Table 2.3*. The detailed monitoring results and the graphical presentation of the 24-hour TSP monitoring results at each monitoring location are provided in *Annex D1*. Table 2.3 Summary of 24-hour TSP Monitoring Results in the Reporting Period | Month | Monitoring | 24-hr TSP Conce | ntration (µg m-³) | Action Level | Limit Level | |---------------|------------|-----------------|-------------------|--------------|-------------| | | Station | Average | Range | (μg/m³) | (μg/m³) | | January 2022 | AM1 | 133 | 55 - 210 | 260 | 260 | | | AM2 | 66 | 32 - 102 | 260 | 260 | | | AM3 | 150 | 100 - 218 | 260 | 260 | | | AM4 | 105 | 53 - 132 | 260 | 260 | | February 2022 | AM1 | 73 | 42 - 132 | 260 | 260 | | | AM2 | 56 | 32 - 85 | 260 | 260 | | | AM3 | 100 | 57 - 140 | 260 | 260 | | | AM4 | 75 | 47 - 107 | 260 | 260 | | March 2022 | AM1 | 96 | 62 - 133 | 260 | 260 | | | AM2 | 70 | 39 - 106 | 260 | 260 | | | AM3 | 163 | 35 - 224 | 260 | 260 | | | AM4 | 81 | 33 - 107 | 260 | 260 | The major dust sources in the reporting period included fugitive dust emission from exposed area in SENTX, as well as nearby operations of the SENT landfill and the TKO Area 137 Fill Bank. All the 24-hour TSP results were below the Action and Limit Levels at the monitoring locations in the reporting period. No action is thus required to be undertaken in accordance with the Event and Action Plan presented in Annex D2. Meteorological data obtained from the SENTX on-site meteorological monitoring station was used for the dust monitoring and is shown in *Annex D3*. It is considered that meteorological data obtained at the on-site meteorological monitoring station is representative of the Project area and could be used for the operation/ restoration phase dust monitoring programme for the Project. # 2.1.2 Odour Monitoring ## Monitoring Requirements According to the updated EM&A Manual of the Project, odour patrol was carried out along the site boundary during the operation/ restoration phase. During the first month of operation, daily odour patrol (3 times per day) was conducted jointly by the ET and the IEC. The odour intensity detected was based on that determined by the IEC. In addition, an independent party (ALS Technichem (HK) Pty Ltd.) was appointed to undertake odour patrol together with the ET and IEC three times per week. During these patrols, the odour intensity detected was based on that determined by the independent third party. Reduction of odour monitoring frequency from Period 1 (daily, three times per day) to Period 2 (weekly)) was approved by EPD on 4 February 2022. Weekly odour patrol was conducted jointly by the ET and the IEC from 4 February 2022. In addition, an independent party (ALS Technichem (HK) Pty Ltd.) was appointed to undertake odour patrol together with the ET and IEC once every two weeks. The Action and Limit Levels for odour patrol is provided in *Table 2.4* below. Table 2.4 Action and Limit Levels for Odour Patrol | Parameter | Action Level | Limit Level | |--|---|--| | Perceived odour intensity and odour complaints | Odour intensity ≥ Class 2
recorded; or One documented complaint
received | Odour intensity ≥ Class 3
recorded on 2 consecutive
patrol (a) (b) | #### Notes: - (a) i.e. either Class 3-strong or Class 4-extreme odour intensity. - (b) The exceedances of the odour intensity do not need to be recorded at the same location. Odour patrol was conducted by trained personnel / competent persons with a specific sensitivity to a reference odour (i.e. on reference materials n-butanol with the concentration of 50ppm in nitrogen (v/v)) in compliance with Section 3.7.2 of the updated EM&A Manual patrolling and sniffing along the SENTX Site boundary to detect any odour. The odour monitoring programme and patrol route are summarised in *Table* 2.5 and illustrated in *Figure* 2.2 respectively. Table 2.5 Odour Monitoring Details | Patrol Parameters Patrol F | | Manitonina Datas and | |----------------------------|-----------------------------------|---| | Locations | requency (a) | Monitoring Dates and
Time | | | - First month of operation | Conducted by ET & | | 9 | ree times a day in the morning, | IEC: | | ž · . | on and evening/night (between | 1 – 31 Jan 2022 | | | d 22:00 hrs) conducted by the | (10:30 – 12:00, 14:30 – | | OP1 – OP11 ET and t | • | 16:00, 18:00 – 19:30) | | (d)) | iic iic | 10.00, 10.00 - 17.50) | | , | mes per week on different days | 1 - 4 Feb 2022 | | | ed by an independent third | (10:30 – 12:00, 14:30 – | | | gether with the ET and IEC (b) | 16:00, 18:00 – 19:30), 18, | | 1 5 | o | 28 Feb 2022 | | Period 2 | - Three months following | | | period 1 | _ | 7, 16, 21, 29 Mar 2022 | | - | | | | Weekly | conducted by the ET and the | Conducted by an | | IEC | | independent third | | | | party, ET & IEC: | | | ery two weeks conducted by an | 1 Jan 2022 (14:30 - | | _ | dent third party together with | 16:00), 5 Jan 2022 (10:00 | | the ET a | nd IEC (b) | - 12:00), 7 Jan 2022 | | | | (14:30 – 16:00), 10 Jan | | | - Throughout operation | 2022 (14:30 – 16:00), 12 | | | g period 2 (c) | Jan 2022 (14:30 – 16:00), | | • | conducted by the ET and the | 14 Jan 2022 (14:30 – | | IEC | | 16:00), 17 Jan 2022 | | Overation | he and death diverse in demandent | (14:30 – 16:00), 18 Jan | | | ly conducted by an independent | | | IEC (b) | rty together with the ET
and | Jan 2022 (14:30 – 16:00),
24 Jan 2022 (14:30 – | | IEC (8) | | 16:00), 25 Jan 2022 | | | | (14:30 – 16:00), 27 Jan | | | | 2022 (10:00 – 12:00), | | | | 31 Jan 2022 (14:30 – | | | | 16:00) | | | | / | | | | 4 Feb 2022 (10:00 - | | | | 12:00), 11, 21 Feb 2022 | | | | | | | | 7, 21 Mar 2022 | #### Notes: - (a) Reduction of monitoring frequency will be subject to the monitoring results to demonstrate environmentally acceptable performance. - (b) Patrol shall be scheduled so that they are carried out together with the patrols to be carried out jointly by the ET and the IEC. - (c) Commencement of each period will be justified by the ET Leader and verified by the IEC and will be subject to agreement with the EPD (EIAO Authority) and Project Proponent. - (d) The revised odour patrol route with the addition of checkpoint OP11 was applied from 10 December 2021. Table 2.6 Odour Intensity Level | Class | Odour Intensity | Description | |-------|-----------------|---| | 0 | Not Detected | No odour perceived or an odour so weak that it cannot be easily characterised or described. | | 1 | Slight | Identified odour, slight | | 2 | Moderate | Identified odour, moderate | | 3 | Strong | Identified odour, strong | | 4 | Extreme | Severe odour | Monitoring Schedule for the Reporting Month The schedule for odour patrol during the reporting period is provided in *Annex C*. Results and Observations The odour monitoring results are summarised and provided in *Table 2.7* and *Annex D4*, respectively. Table 2.7 Summary of Odour Monitoring Results in the Reporting Period | Odour Checkpoints | Odour Intensity Class (Range) | Action Level | Limit Level | |-------------------|-------------------------------|-------------------|-------------------------| | OP1 | 0 - 1 | Odour intensity ≥ | Odour intensity ≥ | | OP2 | 0 - 1 | Class 2 recorded | Class 3 recorded | | OP3 | 0 - 1 | | on 2 consecutive patrol | | OP4 | 0 - 1 | | patroi | | OP5 | 0 - 1 | | | | OP6 | 0 | | | | OP7 | 0 – 1 | | | | OP8 | 0 - 1 | | | | OP9 | 0 - 1 | | | | OP10 | 0 - 1 | | | | OP11 | 0 - 1 | | | The potential odour sources in the reporting period included the construction works, generator, slurry truck, excavator, dead body of wild animal ,vehicles and vegetation at SENTX, as well as nearby operations of the Leachate Treatment Plant and Town Gas Plant. All the odour monitoring results were below the Action and Limit Levels in the reporting period. No action is thus required to be undertaken in accordance with the Event and Action Plan presented in *Annex D2*. # 2.1.3 Thermal Oxidiser, Landfill Gas Flare and Landfill Gas Generator Stack Emission Monitoring Monitoring Requirements and Equipment According to the updated EM&A Manual of the Project, the performance of the thermal oxidiser, landfill gas flare and landfill gas generator was monitored when they are in operation. Gas samples were collected from the stack of the thermal oxidizer, landfill gas flare and landfill gas generator for laboratory analysis for NO₂, CO, SO₂, Benzene and Vinyl chloride and in-situ analysis for exhaust gas velocity at monthly interval. The operating conditions of the thermal oxidiser, landfill gas flare and landfill gas generator were also monitored continuously. The Limit Levels for stack emission of the thermal oxidiser, landfill gas flare and landfill gas generator are provided in *Tables 2.8* – 2.10 below. Table 2.8 Limit Levels for Stack Emission of the Thermal Oxidiser | Parameters | Limit Level | | |--------------------------------------|---|--| | NO ₂ | 1.58 gs ⁻¹ | | | CO | $0.53~{ m gs^{-1}}$ | | | SO_2 | $0.07~{ m gs}^{-1}$ | | | Benzene | $3.01 \times 10^{-2} \text{ gs}^{-1}$ | | | Vinyl chloride | $2.23 \times 10^{-3} \text{ gs}^{-1}$ | | | Gas combustion temperature | 850°C (minimum) | | | Exhaust gas exit temperature | 443K (minimum) (a) | | | Exhaust gas velocity | 7.5 ms ⁻¹ (minimum) ^(a) | | | Note: | | | | (a) Level under full load condition. | | | Table 2.9 Limit Levels for Stack Emission of the Landfill Gas Flare | Parameters | Limit Level | |--------------------------------------|--| | NO ₂ | 0.97 gs ⁻¹ | | CO | 2.43 gs ⁻¹ | | SO_2 | 0.22 gs ⁻¹ | | Benzene | $4.14 \times 10^{-4} \text{ gs}^{-1}$ | | Vinyl Chloride | $2.60 \times 10^{-4} \text{ gs}^{-1}$ | | Gas combustion temperature | 815°C (minimum) | | Exhaust gas exit temperature | 923 K (minimum) (a) | | Exhaust gas velocity | 9.0 m s ⁻¹ (minimum) ^(a) | | Note: | | | (a) Level under full load condition. | | Table 2.10 Limit Levels for Stack Emission of the Landfill Gas Generator | Parameters | Limit Level | |------------------------------|--| | NO ₂ | 1.91 gs ⁻¹ | | CO | 2.48 gs ⁻¹ | | SO ₂ | 0.528 gs ⁻¹ | | Benzene | $2.47 \times 10^{-4} \text{ gs}^{-1}$ | | Vinyl chloride | 1.88 x 10 ⁻⁵ gs ⁻¹ | | Gas combustion temperature | 450°C (minimum) | | Exhaust gas exit temperature | 723K (minimum) (a) | | Exhaust gas velocity | 30.0 ms ⁻¹ (minimum) ^(a) | | Parameters | Limit Level | |--------------------------------------|-------------| | Note: | | | (a) Level under full load condition. | | Gas samples were collected from the centroid of the stack with stainless steel sampling probe, into inert sample containers (i.e. Canister and Tedlar Bag) and transferred to ALS Technichem (HK) Pty Ltd. (HOKLAS Registration No. 066) laboratory within 24 hours of collection for direct analysis on a gas chromatography within 48 hours after collection. The flue gas velocity of the gas stream at the exhaust of thermal oxidizer was determined by S-Pitot tube during the emission sampling. The stack emission monitoring programme and monitoring locations are summarised in *Table 2.11* and illustrated in *Figure 2.1*, respectively. Table 2.11 Thermal Oxidiser, Landfill Gas Flare and Landfill Gas Generator Stack Emission Monitoring Details | Monitoring Location | Parameter | Frequency | Monitoring Date | |--------------------------------|--|--|--| | Stack of Thermal Oxidiser | Laboratory analysis for • NO ₂ • CO • SO ₂ • Benzene • Vinyl chloride In-situ analysis for | Monthly for the first 12 months of operation and thereafter at quarterly intervals | 12 Jan 2022,
11 Feb 2022,
7 Mar 2022 | | | Exhaust gas velocityLaboratory analysis forNon-methane organic compounds | Quarterly for the 1st
year of operation (b) | 11 Feb 2022 | | | Laboratory analysis for • Ammonia | Quarterly | 11 Feb 2022 | | | Gas combustion
temperature Exhaust temperature Exhaust gas velocity (a) | Continuously | 1 Jan – 31 Mar
2022 | | Stack of Landfill Gas
Flare | Laboratory analysis for NO ₂ CO SO ₂ Benzene Vinyl chloride | Monthly for the first 12 months of operation and thereafter at quarterly intervals | 12 Jan 2022,
11 Feb 2022,
8 Mar 2022 | | | In-situ analysis for Exhaust gas velocity Laboratory analysis for Non-methane organic compounds | Quarterly for the 1 st year of operation (b) | 11 Feb 2022 | | Monitoring Location | Parameter | Frequency | Monitoring Date | |------------------------------------|------------------------------------|--|------------------------------| | | Gas combustion
temperature | Continuously | 1 Jan – 31 Mar
2022 | | | • Exhaust temperature | | | | | Exhaust gas velocity (a) | | | | Stack of Landfill Gas
Generator | Laboratory analysis for | Monthly for the first 12 months of operation | 12 Jan 2022,
11 Feb 2022, | | Generator | • NO ₂ | and thereafter at quarterly intervals | 8 Mar 2022 | | | • CO | | | | | • SO ₂ | | | | | Benzene | | | | | Vinyl chloride | | | | | In-situ analysis for | | | | | • Exhaust gas velocity | | | | | Laboratory analysis for | Quarterly for the 1st | 11 Feb 2022 | | | Non-methane organic compounds | year of operation (b) | | | | • Exhaust temperature | Continuously | 1 Jan – 31 Mar
2022 | | | Exhaust gas velocity (a) | | | #### Note: - (a) The exhaust gas velocity will be calculated based on the cross-section area of the stack and continuous monitored gas flow and combustion temperature data. - (b) The monitoring results will be reviewed towards the end of the first year of operation to determine if monitoring of this parameter can be terminated upon agreement by the EIAO Authority, IEC and Project Proponent. # Monitoring Schedule for the Reporting Month The schedule for thermal oxidizer, landfill gas flare and landfill gas generator stack emission monitoring during the reporting period is provided in *Annex C*. # Results and Observations The thermal oxidizer, landfill gas flare and landfill gas generator stack emission monitoring results and detailed continuous monitoring results are summarised in *Tables 2.12 - 2.14* and provided in *Annex D5*, respectively. Table 2.12 Summary of Thermal Oxidiser Stack Emission Monitoring in the Reporting Period | Parameters | Monitoring Results (Range in Bracket) | Limit Level | | | |--------------------------------|--|---|--|--| | January 2022 | | | | | | NO ₂ | 0.38 gs ⁻¹ | 1.58 gs ⁻¹ | | | | CO | 0.047 gs ⁻¹ | 0.53 gs ⁻¹ | | | | SO ₂ | <0.015 gs ⁻¹ | 0.07 gs ⁻¹ | | | | Benzene | <4 x 10-5 gs-1 | 3.01 x 10 ⁻² gs ⁻¹ | | | | Vinyl chloride | $<3 \times 10^{-5} \text{ gs}^{-1}$ | 2.23 x 10 ⁻³ gs ⁻¹ | | | | Gas combustion temperature |
972°C (952°C - 994°C) | 850°C (minimum) | | | | Exhaust gas exit temperature | 1,237K (1,218K - 1,265K) | 443K (minimum) (a) | | | | Exhaust gas velocity | 9.9 ms ^{-1 (b)} | 7.5 ms ⁻¹ (minimum) (a) | | | | | February 2022 | | | | | NO ₂ | 1.17 gs ⁻¹ | 1.58 gs ⁻¹ | | | | CO | 0.06 gs ⁻¹ | 0.53 gs ⁻¹ | | | | SO ₂ | $0.02~{\rm gs^{\text{-}1}}$ | 0.07 gs ⁻¹ | | | | Benzene | $<3 \times 10^{-5} \text{ gs}^{-1}$ | 3.01 x 10 ⁻² gs ⁻¹ | | | | Vinyl chloride | $<3 \times 10^{-5} \text{ gs}^{-1}$ | 2.23 x 10 ⁻³ gs ⁻¹ | | | | Non-methane Organic
Carbons | 3.6 x 10 ⁻³ gs ⁻¹ | - | | | | Ammonia | 6.52 x 10 ⁻² gs ⁻¹ | _ (c) | | | | Gas combustion temperature | 973°C (958°C - 1,013°C) | 850°C (minimum) | | | | Exhaust gas exit temperature | 1,230K (1,219K - 1,241K) | 443K (minimum) (a) | | | | Exhaust gas velocity | 9.9 ms ^{-1 (b)} | 7.5 ms ⁻¹ (minimum) (a) | | | | | March 2022 | | | | | NO ₂ | 1.54 gs ⁻¹ | 1.58 gs ⁻¹ | | | | CO | 0.04 gs ⁻¹ | 0.53 gs ⁻¹ | | | | SO ₂ | <0.01 gs ⁻¹ | 0.07 gs ⁻¹ | | | | Benzene | $<3 \times 10^{-5} \text{ gs}^{-1}$ | $3.01 \times 10^{-2} \text{ gs}^{-1}$ | | | | Vinyl chloride | $<3 \times 10^{-5} \text{ gs}^{-1}$ | $2.23 \times 10^{-3} \text{ gs}^{-1}$ | | | | Gas combustion temperature | 979°C (959°C - 1,035°C) | 850°C (minimum) | | | | Exhaust gas exit temperature | 957K (941K - 1,003K) | 443K (minimum) (a) | | | | Exhaust gas velocity | 9.1 ms ^{-1 (b)} | 7.5 ms ⁻¹ (minimum) ^(a) | | | #### Note: - (a) Level under full load condition. - (b) The exhaust gas velocity was calculated based on the cross-section area of the stack and the gas flow and combustion temperature data measured during the stack emission monitoring. The limit level was not applicable as the stack was not operated under full load condition. - (c) The emission limit for ammonia is under review and will be supplemented in subsequent revision. Table 2.13 Summary of Landfill Gas Flare Stack Emission Monitoring in the Reporting Period | Parameters | Monitoring Results (Range in Bracket) | Limit Level | |------------------------------|---|--| | | January 2022 | | | NO ₂ | Flare 1: <0.01 gs ⁻¹ | 0.97 gs ⁻¹ | | | Flare 2: <0.01 gs ⁻¹ | | | CO | Flare 1: 0.032 gs ⁻¹ | 2.43 gs ⁻¹ | | | Flare 2: 0.04 gs ⁻¹ | | | SO ₂ | Flare 1: 0.09 gs ⁻¹ | 0.22 gs ⁻¹ | | | Flare 2: 0.10 gs ⁻¹ | | | Benzene | Flare 1: 1.3 x 10 ⁻⁵ gs ⁻¹ | 4.14 x 10 ⁻⁴ gs ⁻¹ | | | Flare 2: 1.6 x 10 ⁻⁵ gs ⁻¹ | | | Vinyl chloride | Flare 1: <1.1 x 10 ⁻⁵ gs ⁻¹ | 2.60 x 10 ⁻⁴ gs ⁻¹ | | | Flare 2: <1.3 x 10 ⁻⁵ gs ⁻¹ | | | Gas combustion temperature | Flare 1: 1,010°C (854°C - 1,171°C) | 815°C (minimum) | | | Flare 2: 916°C (820°C - 1,171°C) | | | Exhaust gas exit temperature | Flare 1: 1,144K (1,023K - 1,223K) | 923 K (minimum) (a) | | | Flare 2: 1,116K (1,045K - 1,283K) | | | Exhaust gas velocity | Flare 1: 4.3 ms ^{-1 (b)} | 9.0 m s-1 (minimum) (a) | | | Flare 2: 2.0 ms ^{-1 (b)} | | | | February 2022 | | | NO ₂ | <0.01 gs ⁻¹ | 0.97 gs ⁻¹ | | CO | 0.027 gs ⁻¹ | 2.43 gs ⁻¹ | | SO ₂ | 0.110 gs ⁻¹ | 0.22 gs ⁻¹ | | Benzene | $5.1 \times 10^{-5} \text{ gs}^{-1}$ | 4.14 x 10 ⁻⁴ gs ⁻¹ | | Vinyl chloride | <1.1 x 10 ⁻⁵ gs ⁻¹ | 2.60 x 10 ⁻⁴ gs ⁻¹ | | Non-methane Organic Carbons | $4.1 \times 10^{-3} \text{ gs}^{-1}$ | - | | Gas combustion temperature | Flare 1: 893°C (816°C - 995°C) | 815°C (minimum) | | | Flare 2: 857°C (830°C - 924°C) | | | Exhaust gas exit temperature | Flare 1: 1,143K (1,083K - 1,213K) | 923 K (minimum) (a) | | | Flare 2: 1,072K (1,015K - 1,123K) | | | Exhaust gas velocity | 4.4 ms ⁻¹ (b) | 9.0 m s ⁻¹ (minimum) (a) | | | March 2022 | | | NO ₂ | 0.02 gs ⁻¹ | 0.97 gs ⁻¹ | | CO | 0.056 gs ⁻¹ | 2.43 gs ⁻¹ | | SO_2 | $0.007~{ m gs^{-1}}$ | 0.22 gs ⁻¹ | | Benzene | <1.2 x 10 ⁻⁵ gs ⁻¹ | 4.14 x 10 ⁻⁴ gs ⁻¹ | | Vinyl chloride | <1.0 x 10 ⁻⁵ gs ⁻¹ | 2.60 x 10 ⁻⁴ gs ⁻¹ | | Gas combustion temperature | Flare 1: 911°C (830°C - 990°C) | 815°C (minimum) | | • | Flare 2: 854°C (820°C – 890°C) | . , | | Exhaust gas exit temperature | Flare 1: 1,141K (1,073K - 1,223K) | 923 K (minimum) (a) | | | Flare 2: 1,077K (1,033K - 1,123K) | , , | | Exhaust gas velocity | 3.9 ms ⁻¹ (b) | 9.0 m s ⁻¹ (minimum) ^(a) | | 5 | | , | | Parameters | Monitoring Results (Range in | Limit Level | |------------|------------------------------|-------------| | | Bracket) | | #### Note: Table 2.14 Summary of Landfill Gas Generator Stack Emission Monitoring in the Reporting Period | Parameters | Monitoring Results (Range in Bracket) | Limit Level | |--------------------------------|---------------------------------------|--| | | January 2022 | | | NO ₂ | 0.008 gs ⁻¹ | 1.91 gs ⁻¹ | | CO | 0.050 gs ⁻¹ | 2.48 gs ⁻¹ | | SO ₂ | 0.009 gs ⁻¹ | 0.528 gs ⁻¹ | | Benzene | 2 x 10-6 gs-1 | 2.47 x 10 ⁻⁴ gs ⁻¹ | | Vinyl chloride | <1.3 x 10-6 gs-1 | 1.88 x 10 ⁻⁵ gs ⁻¹ | | Exhaust gas exit temperature | 843K (835K - 853K) | 723K (minimum) (a) | | Exhaust gas velocity | 7.8 ms ^{-1 (b)} | 30.0 ms ⁻¹ (minimum) (a) | | | February 2022 | | | NO ₂ | 0.016 gs ⁻¹ | 1.91 gs ⁻¹ | | CO | 0.056 gs ⁻¹ | 2.48 gs ⁻¹ | | SO ₂ | 0.002 gs ⁻¹ | 0.528 gs ⁻¹ | | Benzene | <3 x 10-6 gs-1 | 2.47 x 10 ⁻⁴ gs ⁻¹ | | Vinyl chloride | <2 x 10-6 gs-1 | $1.88 \times 10^{-5} \text{ gs}^{-1}$ | | Non-methane Organic
Carbons | $2 \times 10^{-4} \text{ gs}^{-1}$ | - | | Exhaust gas exit temperature | 843K (836K - 847K) | 723K (minimum) (a) | | Exhaust gas velocity | 11.9 ms ^{-1 (b)} | 30.0 ms ⁻¹ (minimum) (a) | | | March 2022 | | | NO ₂ | 0.022 gs ⁻¹ | 1.91 gs ⁻¹ | | CO | 0.06 gs ⁻¹ | 2.48 gs ⁻¹ | | SO ₂ | <0.001 gs ⁻¹ | 0.528 gs ⁻¹ | | Benzene | <2 x 10-6 gs-1 | 2.47 x 10 ⁻⁴ gs ⁻¹ | | Vinyl chloride | <1.9 x 10-6 gs-1 | 1.88 x 10 ⁻⁵ gs ⁻¹ | | Exhaust gas exit temperature | 845K (840K - 850K) | 723K (minimum) (a) | | Exhaust gas velocity | 7.8 ms ^{-1 (b)} | 30.0 ms ⁻¹ (minimum) (a) | | Note: | | | ### Note: All thermal oxidizer, landfill gas flare and landfill gas generator stack emission monitoring results were below the Limit Levels in the reporting period. No action is thus required to be undertaken in accordance with the Event and Action Plan presented in *Annex D2*. ⁽a) Level under full load condition. ⁽b) The exhaust gas velocity was calculated based on the cross-section area of the stack and the gas flow and combustion temperature data measured during the stack emission monitoring. The limit level was not applicable as the stack was not operated under full load condition. ⁽a) Level under full load condition. ⁽b) The exhaust gas velocity was calculated based on the cross-section area of the stack and the gas flow and combustion temperature data measured during the stack emission monitoring. The limit level was not applicable as the stack was not operated under full load condition. # 2.1.4 Ambient VOCs, Ammonia and H₂S Monitoring Monitoring Requirements and Equipment According to the updated EM&A Manual of the Project, ambient VOCs, ammonia and H_2S monitoring was carried out at the four designated locations along the site boundary (i.e. AM1, AM2, AM3 and AM4) during the operation/restoration phase, at quarterly interval. The Limit Levels for ambient VOCs, ammonia and H₂S monitoring is provided in *Table 2.15* below. Table 2.15 Limit Levels for Ambient VOCs, Ammonia and H₂S Monitoring | Parameters | Limit Level (μg m-³) | |--------------------------|----------------------| | Ammonia | 180 | | H ₂ S | 42 | | Methane | NA (a) | | 1.1.1-Trichloroethane | 5,550 | | 1.2-Dibromoethane (EDB) | 39 | | 1.2-Dichloroethane | 210 | | Benzene | 33 | | Butan-2-ol | 3,080 | | Butanethiol | 4 | | Carbon Disulphide | 150 | | Carbon Tetrachloride | 64 | | Chloroform | 99 | | Decanes | 3,608 | | Dichlorobenzene | 120 | | Dichlorodifluoro-methane | NA (a) | | Dimethylsulphide | 8 | | Dipropyl ether | NA (a) | | Limonene | 212 | | Ethanethiol | 13 | | Ethanol | 19,200 | | Ethyl butanoate | 71 | | Ethyl propionate | 29 | | Ethyl benzene | 4,410 | | Heptane | 20,850 | | Methanethiol | 10 | | Methanol | 2,660 | | Methyl butanoate | 30 | | Methyl propionate | 353 | | Methylene Chloride | 3,530 | | Butyl acetate | 7,240 | | Butyl benzene | 47 | | Nonane | 11,540 | | Propyl benzene | 19 | | Octane | 7,942 | |---------------------|--------| | Propyl propionate | 276 | | Terpenes | NA (a) | | Tetrachloroethylene | 1,380 | | Toluene | 1,910 | | Trichloroethylene | 5,500 | | Undecane | 5,562 | | Vinyl Chloride | 26 | | Xylenes | 2,200 | #### Notes: (a) No relevant WHO/USEPA/CARB's ambient criteria, odour thresholds and WEL available. #### **VOCs** Ambient air samples were drawn into the pre-cleaned and vacuum canister directly when the valve of the flow controller (with preset flow rate) was opened. After sampling, the valve will be closed manually and the canister with VOCs gas samples were transported for laboratory analysis. #### Methane Pre-cleaned Tedlar bag was placed in the vacuum chamber. Ambient air was collected in the Tedlar bag under the vacuum condition when the pump is switched on. The Tedlar bag was filled up to 90% of total capacity to avoid leakage and bag deformation. After sampling, pump is switched off and the valve of Tedlar bag was closed manually. The air samples were transported back to laboratory for analysis. #### Ammonia Calibrated personal air pump was used to pump the air through a sulfuric acid-treated silica gel sorbent tube. Gaseous ammonia in air was then trapped in the sorbent tube. The tube was transported back to laboratory for analysis. #### H_2S H₂S in air is collected in mid-get impingers by aspirating a measured volume of air through an alkaline suspension of cadmium hydroxide (as the absorbing solution). The sulphide is precipitated as cadmium sulphide to prevent air oxidation of the sulphide. Arabinogalactan is added to the cadmium hydroxide slurry prior to sampling to minimize photodecomposition of the precipitated cadmium sulphide. The solution is transported back to
laboratory for analysis. All air samples collected for laboratory analysis were transported to ALS Technichem (HK) Pty Ltd. (HOKLAS Registration No. 066) laboratory within 24 hours and analysed within 48 hours. The ambient VOCs, ammonia and H₂S monitoring programme and monitoring locations are summarised in *Table 2.16* and illustrated in *Figure 2.1*, respectively. Table 2.16 Ambient VOCs, Ammonia and H₂S Monitoring Details | Monitorii
Station | ng Location | Parameter | Frequency | Monitoring
Date | |----------------------|---|--|----------------------------|--------------------| | AM1 | SENTX Site Boundary (North |) • Methane | Quarterly | 15 Feb 2022 | | AM2 | SENTX Site Boundary (West, near DP3) | AmmoniaA suite of | | | | AM3 | SENTX Site Boundary (West, near RC15) | VOCs (a) • H ₂ S | | | | AM4 | SENTX Site Boundary (West, near EPD building) | | | | | Notes: | | | | | | (a) A su | ite of VOCs includes: | | | | | | Frichloroethylene • | Butyl benzene | _ | orobenzene | | • 7 | Vinyl chloride • | Xylenes | Methy | yl butanoate | | • 1 | Methylene chloride • | Decanes | Dipro | pyl ether | | • (| Chloroform • | Undecane | Metha | anethiol | | • 1 | ,2-dichloroethane • | Limonene | • Ethan | ethiol | | • 1 | ,1,1-trichloroethane • | Terpenes | • Butan | ethiol | | • (| Carbon tetrachloride • | Ethanol | Metha | anol | | •] | Tetrachloroethylene • | Butan-2-ol | Hepta | nnes | | • 1 | ,2-dibromoethane • | Dimethylsulphide | Octan | | | • I | Benzene • | Methyl propionate | • Nona | nes | | •] | Foluene • | Ethyl propionate | Dichle | orodifluoro- | | • (| Carbon disulphide • | Propyl propionate | metha | ane | | | Propyl benzene • | Butyl acetate | Metha | ane | | | Ethyl benzene • | Ethyl butanoate | | | Monitoring Schedule for the Reporting Month The schedule for ambient VOCs, ammonia and H₂S monitoring during the reporting period is provided in *Annex C*. Results and Observations The ambient VOCs, ammonia and H_2S monitoring results are summarised in *Tables 2.17* and provided in *Annex D6*. Table 2.17 Summary of Ambient VOCs, Ammonia and H₂S Monitoring Results in the Reporting Period | Parameters | Limit Level
(µg m ⁻³) | Monitoring Results (μg m ⁻³) | | | | | |--------------------------|--------------------------------------|--|----------------|----------------|---------------|--| | | | AM1 | AM2 | AM3 | AM4 | | | Methane | NA (a) | 0.00068% (v/v) | 0.00031% (v/v) | 0.00020% (v/v) | 0.00020% (v/v | | | Ammonia | 180 | <10 | <10 | <10 | <10 | | | H ₂ S | 42 | <14 | <14 | <14 | <14 | | | 1.1.1-Trichloroethane | 5,550 | <0.8 | < 0.8 | <0.8 | <0.8 | | | 1.2-Dibromoethane (EDB) | 39 | <1.0 | <1.0 | <1.0 | <1.0 | | | 1.2-Dichloroethane | 210 | 0.5 | 0.5 | 0.5 | 0.6 | | | Benzene | 33 | 2.0 | 1.5 | 1.2 | 1.5 | | | Butan-2-ol | 3,080 | <0.6 | <0.6 | <0.6 | <0.6 | | | Butanethiol | 4 | <1.2 | <1.2 | <1.2 | <1.2 | | | Carbon Disulphide | 150 | 1.8 | 1.2 | 0.8 | 1.2 | | | Carbon Tetrachloride | 64 | 0.7 | 0.8 | 0.7 | 0.8 | | | Chloroform | 99 | <0.8 | <0.8 | <0.8 | <0.8 | | | Decanes | 3,608 | 0.7 | <0.7 | 1.8 | <0.7 | | | Dichlorobenzene | 120 | <1.0 | <1.0 | <1.0 | <1.0 | | | Dichlorodifluoro-methane | NA (a) | 1.3 | 1.8 | 1.3 | 1.9 | | | Dimethylsulphide | 8 | <0.2 | <0.2 | <0.2 | <0.2 | | | Dipropyl ether | NA (a) | <0.8 | <0.8 | <0.8 | <0.8 | | | d-Limonene | 212 | 0.8 | <0.4 | 0.9 | <0.4 | | | Ethanethiol | 13 | <0.6 | <0.6 | <0.6 | <0.6 | | | Ethanol | 19,200 | 8.2 | <3.8 | <3.8 | <3.8 | | | Ethyl butanoate | 71 | <1.0 | <1.0 | <1.0 | <1.0 | | | Ethyl propionate | 29 | <0.8 | <0.8 | <0.8 | <0.8 | | | Ethylbenzene | 4,410 | 0.9 | 0.6 | 1.5 | 0.6 | | | Heptane | 20,850 | <0.8 | <0.8 | <0.8 | <0.8 | | | Methanethiol | 10 | <0.4 | <0.4 | < 0.4 | <0.4 | | | Methanol | 2,660 | 13.3 | 29.9 | 37.2 | 22.0 | | | Methyl butanoate | 30 | <0.8 | <0.8 | <0.8 | <0.8 | | | Methyl propionate | 353 | <0.7 | <0.7 | <0.7 | <0.7 | | | Methylene Chloride | 3,530 | 2.4 | 3.0 | 2.9 | 3.2 | | | n-Butyl acetate | 7,240 | <1.0 | <1.0 | <1.0 | <1.0 | | | n-Butyl benzene | 47 | <1.0 | <1.0 | <1.0 | <1.0 | | | Nonane | 11,540 | <0.9 | <0.9 | <0.9 | <0.9 | | | n-Propyl benzene | 19 | <0.8 | <0.8 | <0.8 | <0.8 | | | Octane | 7,942 | <0.9 | <0.9 | <0.9 | <0.9 | | | Propyl propionate | 276 | <1.0 | <1.0 | <1.0 | <1.0 | | | Terpenes | NA (a) | 2.3 | 0.9 | 0.9 | <0.8 | | | Tetrachloroethylene | 1,380 | 0.7 | 0.7 | 0.7 | <0.7 | | | Toluene | 1,910 | 1.7 | 1.5 | 2.8 | 1.9 | | | Trichloroethylene | 5,500 | <1.1 | <1.1 | <1.1 | <1.1 | | | Undecane | 5,562 | <1.2 | <1.2 | <1.2 | <1.2 | | | Vinyl Chloride | 26 | <0.3 | <0.3 | <0.3 | <0.3 | | | Xylenes | 2,200 | 2.3 | 1.6 | 3.5 | 1.0 | | ### Notes: (a) No relevant WHO/USEPA/CARB's ambient criteria, odour thresholds and WEL available. All ambient VOCs, ammonia and H_2S monitoring results were below the Limit Levels in the reporting period. No action is thus required to be undertaken in accordance with the Event and Action Plan presented in *Annex D2*. ### 2.2 Noise Monitoring # 2.2.1 Monitoring Requirements and Equipment According to the updated EM&A Manual of the Project, impact noise monitoring was conducted weekly at the monitoring location (i.e. NM1) to obtain one set of 30 minutes measurement between 07:00 and 19:00 hours on normal weekdays. The Action and Limit Levels for operational noise of the Project are provided in *Table 2.18* below. Table 2.18 Action and Limit Levels for Operational Noise | Time Period | Action Level (a) | Limit Level (b) | |-------------------------------|---|----------------------| | 07:00 - 19:00 hrs on all days | When one documented complaint is received from any one of the noise | 65 dB(A) at NSRs (c) | | 19:00 – 23:00 hrs on all days | sensitive receivers (NSRs)
or | 65 dB(A) at NSRs (c) | | 23:00 – 07:00 hrs on all days | 75 dB(A) recorded at the monitoring station | 55 dB(A) at NSRs (c) | #### Notes: - (a) 75dB(A) along and at about 100m from the SENTX site boundary was set as the Action Level - (b) Limits specified in the GW-TM and IND-TM for construction and operational noise, respectively. - (c) Limit Level only apply to operational noise without road traffic and construction activities noise. Noise monitoring was performed by ALS Technichem (HK) Pty Ltd (HOKLAS Registration No. 066) using a sound level meter placed at the designated monitoring station NM1 (see *Figure 2.1*) in accordance with the requirements stipulated in the updated EM&A Manual. Acoustic calibrator was deployed to check the sound level meter at a known sound pressure level. Details of the deployed equipment are provided in *Table 2.19*. Table 2.19 Noise Monitoring Details | Monitoring | Location | Parameter | Frequency and | Monitoring | Equipment | |-------------|------------|--------------------------|---------------|-------------------|-----------------| | Station (1) | | | Duration | Dates | | | NM1 | SENTX Site | L _{eq (30 min)} | Once per week | 7, 13, 19, 25, 31 | Sound Level | | | Boundary | measurement | for 30 mins | Jan 2022 | Meter: | | | (North) | between 07:00 | during the | | B&K 2238 (S/N: | | | | and 19:00 | operation | 7, 14, 24 Feb | 2285722) | | | | hours on | period of the | 2022 | | | | | normal | Project | | Rion NL-52 | | | | weekdays | | 2, 8, 14, 21, 28 | (S/N: 00921191) | | | | (Monday to | | Mar 2022 | | | | | Saturday) | | | Acoustic | | | | | | | Calibrator: | | | | | | | Rion NC-74 | | | | | | | (S/N: 34246492) | # 2.2.2 Monitoring Schedule for the Reporting Period The schedule for noise monitoring during the reporting period is provided in *Annex C*. ## 2.2.3 Results and Observations A total of 13 impact noise monitoring events were scheduled during the reporting period. However, noise monitoring on 7 February 2022 and 28 March 2022 were cancelled due to adverse weather. The noise monitoring results are summarised in *Table 2.20* and graphically presented in *Annex E1*. Table 2.20 Summary of Noise Monitoring Results in the Reporting Period | Month | Monitoring Measured Noise Level L _{eq (30 min)} , dB(A) | | | L _{eq (30 min)} , dB(A) | |---------------|--|---------|-------------|----------------------------------| | | Station | Average | Range | Action and Limit Level | | January 2022 | NM1 | 51.4 | 49.4 - 53.4 | 75 | | February 2022 | NM1 | 48.6 | 48.1 - 49.0 | 75 | | March 2022 | NM1 | 48.6 | 45.9 - 51.3 | 75 | Major noise sources identified during the noise monitoring included noise from operations of the existing SENT landfill and the TKO Area 137 Fill Bank, aircrafts and insects. No exceedance of the Action and Limit Levels for operation noise monitoring was recorded in the reporting period. No further mitigation measure was required in accordance with the Event and Action Plan presented in *Annex E2*. # 2.3 WATER QUALITY MONITORING # 2.3.1 Surface Water Quality Monitoring Monitoring Requirements and Equipment According to the updated EM&A Manual of the Project, impact surface water quality monitoring was carried out at the three designated surface water discharge points (i.e. DP3, DP4 and DP6) at monthly intervals during operation/ restoration phase to ensure that the SENTX will not cause adverse water quality impact. Suspension of impact surface water quality monitoring at DP3 was approved under the Baseline Monitoring Report by EPD on 24 July 2019 until the actual commencement of construction works affecting DP3 in 2022. The parameters as listed in *Table 2.22* were determined by ALS Technichem (HK) Pty Ltd. (HOKLAS Registration No. 066). The Action and Limit Levels of the surface water
quality impact monitoring are provided in *Table 2.21*. Table 2.21 Action and Limit Levels for Surface Water Quality | Parameters | Limit Level | |---------------------|----------------------| | DP4 & DP6 | | | Ammoniacal-nitrogen | > 7.1 mg/L | | COD | $> 30 \mathrm{mg/L}$ | | SS | > 20 mg/L | The locations of the monitoring stations for the Project are shown in *Figure 2.1*. All *in situ* monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the surface water quality monitoring programme. Calibration for a DO meter was carried out before measurement according to the instruction manual of the equipment model. Details of the equipment used in the impact surface water quality monitoring works are provided in *Table 2.22*. Table 2.22 Impact Surface Water Quality Monitoring Details | Monitoring
Station | Location | Frequency | Monitoring
Dates | Parameter | | Equipment | |------------------------------|--|-----------|---|-----------|----------|--| | DP4 (Future, temporary) DP6 | Surface
water
discharge
point
DP4
Surface
water
discharge
point
DP6 | Monthly | 25 Jan 2022,
24 Feb 2022
21 Mar
2022 | - | Chloride | YSI
Professional
DSS (S/N:
15H103928)
YSI
Professional
DSS (S/N:
17B102764) | | | | | | | | | Notes: Monitoring Schedule for the Reporting Period The schedule for surface water quality monitoring during the reporting period is provided in *Annex C*. Results and Observations A total of 3 monitoring events for impact surface water quality monitoring were scheduled at all designated monitoring stations during the reporting period. However, sampling could not be carried out at the monitoring events below due to insufficient flow: - 25 January 2022 at all monitoring locations; - 24 February 2022 at all monitoring locations; and - 21 March 2022 at all monitoring locations. Details of impact surface water quality monitoring are provided in *Annex F1*. No action is thus required to be undertaken in accordance with the Event and Action Plan presented in *Annex F2*. ⁽a) Impact surface water quality monitoring at DP3 was suspended from the monitoring event on 25 July 2019 until the actual commencement of construction works affecting DP3 in 2022. # 2.3.2 Leachate Monitoring Monitoring Requirements and Equipment According to the updated EM&A Manual, continuous monitoring of leachate level and daily monitoring of effluent quality were carried out during the operation/ restoration phase. Reduction of effluent monitoring frequency (dry season) (from daily to monthly) was approved by EPD on 22 March 2022. Monthly effluent quality monitoring (dry season) shall be conducted from 23 March 2022. Temperature, pH and volume of the effluent discharged from the leachate treatment plant were measured in-situ whereas the parameters as listed in *Table 2.24* were determined by ALS Technichem (HK) Pty Ltd. (HOKLAS Registration No. 066). The Limit Levels of the leachate monitoring are provided in *Table 2.23*. Table 2.23 Limit Levels for Leachate Levels and Effluent Quality | Parameters | Limit Level | | | |---------------------------------------|--|--|--| | Leachate Levels | | | | | Leachate levels above the basal liner | 1 m above the primary liner of the leachate containment system | | | | Effluent Quality | | | | | Temperature | > 43 °C | | | | pH Value | 6 – 10 | | | | Volume Discharged | >1,500 m ³ | | | | Suspended Solids (SS) | > 800 mg/L | | | | Phosphate | > 25 mg/L | | | | Sulphate | > 900 mg/L | | | | Total Inorganic Nitrogen(a) | > 100 mg/L | | | | Biochemical Oxygen Demand (BOD) | > 800 mg/L | | | | Chemical Oxygen Demand (COD) | > 2,000 mg/L | | | | Oil & Grease | > 20 mg/L | | | | Boron | > 7,000 μg/L | | | | Iron | $> 7.5 \mathrm{mg/L}$ | | | | Cadmium | > 1 μg/L | | | | Chromium | > 400 μg/L | | | | Copper | > 1,000 μg/L | | | | Nickel | > 800 μg/L | | | | Zinc | > 800 µg/L | | | #### Note All *in situ* monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals ⁽a) Total Inorganic Nitrogen include Ammoniacal-nitrogen, Nitrite-nitrogen and Nitrate-nitrogen. throughout all stages of the leachate quality monitoring programme. Details of the equipment used are provided in *Table 2.24*. Table 2.24 Leachate Levels and Effluent Quality Monitoring Details | Location | Frequency | Parameter | Monitoring
Dates | Equipment | |---|--|---|----------------------------|--| | Leachate levels
above the basal
liner | Continuous | Leachate Levels | 1 Jan – 31 Mar
2022 | Pairs of pressure transducers | | Effluent
discharged
from LTP | Daily for the first 3 months upon full operation of the LTP at wet season (Apr to Sep) and dry season (Oct to Mar), respectively and reduce to monthly thereafter subject to the monitoring results of the first 3 months for each season and agreement with the EIAO Authority, IEC and IC. (a) | On-site Measurements: Volume pH Temperature Laboratory analysis: Suspended Solids COD BOD5 TOC Ammoniacal- nitrogen Nitrate-nitrogen Nitrite-nitrogen Total Nitrogen Sulphate Phosphate Oil & Grease Alkalinity Chloride Calcium Potassium Magnesium Iron Zinc Copper Chromium Nickel Cadmium Boron | 1 Jan – 23 Mar
2022 (b) | Lutron WA-2017SD (S/N: T.016811) TOA HM-30P (S/N: 790332) | # Note: - (a) Reduction of monitoring frequency will be subject to the monitoring results to demonstrate environmentally acceptable performance. - (b) Effluent monitoring was suspended on 1 and 2 February 2022 as the LTP was not in operation and no treated effluent was discharged from the on-site LTP to the foul sewer leading to Tseung Kwan O Sewage Treatment Works (TKO STW) on 1 and 2 February 2022. Monitoring Schedule for the Reporting Month The schedule for leachate monitoring during the reporting period is provided in *Annex C*. # Results and Observations The leachate levels and effluent quality monitoring results are summarised in *Table 2.25* and *Table 2.26*, respectively. The detailed monitoring results are provided in *Annex F3* and *Annex F4*, respectively. Table 2.25 Summary of Leachate Levels in the Reporting Period | Monitoring Location | Average Leachate Head Levels (cm) (Range in Bracket) | Limit Level (cm) | |----------------------------|--|------------------| | | January 2022 | | | Pump Station No. 1X (Co | | | | Meter No. X-1 | 58 (28 – 79) | > 178 | | Meter No. X-2 | 76 (33 – 99) | | | Average | 67 (38 – 89) | | | Pump Station No. 2X (Co | ell 2X) | | | Meter No. X-1 | 125 (125 – 125) | > 180 | | Meter No. X-2 | 49 (39 – 61) | | | Average | 87 (82 – 93) | | | Pump Station No. 3X (Co | ell 3X) | | | Meter No. X-1 | 94 (75 – 99) | > 175 | | Meter No. X-2 | 94 (75 – 99) | | | Average | 94 (75 – 99) | | | | February 2022 | | | Pump Station No. 1X (Co | ell 1X) | | | Meter No. X-1 | 71 (53 – 97) | > 178 | | Meter No. X-2 | 86 (53 – 117) | | | Average | 78 (63 – 107) | | | Pump Station No. 2X (Co | ell 2X) | | | Meter No. X-1 | 85 (70 – 102) | > 180 | | Meter No. X-2 | 88 (75 – 104) | | | Average | 87 (73 – 103) | | | Pump Station No. 3X (Co | ell 3X) | | | Meter No. X-1 | 91 (62 - 144) | > 175 | | Meter No. X-2 | 91 (62 - 144) | | | Average | 91 (62 – 144) | | | | March 2022 | | | Pump Station No. 1X (Co | ell 1X) | | | Meter No. X-1 | 57 (42 – 79) | > 178 | | Meter No. X-2 | 74 (48 – 99) | | | Average | 66 (52 - 89) | | | Pump Station No. 2X (Co | ell 2X) | | | Meter No. X-3 | 78 (66 – 88) | > 180 | | Meter No. X-4 | 80 (68 - 90) | | | Average | 79 (67 – 89) | | | Pump Station No. 3X (Co | ell 3X) | | | Meter No. X-5 | 80 (53 - 168) | > 175 | | Meter No. X-6 | 80 (53 - 168) | | | Average | 80 (53 - 168) | | Table 2.26 Summary of Effluent Quality Monitoring Results in the Reporting Period | Month | Parameters | Average Monitoring Results (Range in Bracket) | Limit Leve | |--------------|------------------------------|---|-----------------------| | | Effluent Discharged from I | тр | | | January 2022 | Temperature | 27.5°C (21.0°C - 33.5°C) | > 43 °C | | | pH Value | 8.5 (8.3 – 8.6) | 6 - 10 | | | Volume Discharged | 1,051m³ (588m³ - 1,444m³) | >1,500 m ³ | | | Suspended Solids (SS) | 24.8mg/L (13.6mg/L - 75.0mg/L) | > 800 mg/1 | | | Phosphate | 8.7mg/L (7.6mg/L - 9.8mg/L) | > 25 mg/L | | | Sulphate | 101mg/L (86mg/L - 127mg/L) | > 900 mg/ | | | Total Inorganic Nitrogen (a) | 60.7mg/L (48.4mg/L - 72.6mg/L) | > 100 mg/ | | | BOD | 11mg/L (6mg/L - 20mg/L) | > 800 mg/ | | | COD | 1,012mg/L (892mg/L - 1,090mg/L) | > 2,000
mg/L | | | Oil & Grease | <5mg/L ($<5mg/L$ – $<5mg/L$) | $> 20 \mathrm{mg/L}$ | | | Boron | 5,532μg/L (4,720μg/L - 6,380μg/L) | > 7,000 µg, | | |
Iron | 1.37mg/L (1.04mg/L - 1.64mg/L) | > 7.5 mg/l | | | Cadmium | $<1.0\mu g/L$ ($<1.0\mu g/L$ – $<1.0\mu g/L$) | > 1 μg/L | | | Chromium | 132μg/L (121μg/L - 144μg/L) | > 400 µg/I | | | Copper | <10μg/L (<10μg/L - 22μg/L) | > 1,000 μg, | | | Nickel | $124\mu g/L (113\mu g/L - 138\mu g/L)$ | > 800 µg/I | | | Zinc | $50\mu g/L (43\mu g/L - 64\mu g/L)$ | > 800 µg/I | | 2022 | Temperature | 23.9°C (13.2°C - 28.6°C) | > 43 °C | | | pH Value | 8.5 (8.2– 8.6) | 6 - 10 | | | Volume Discharged | 1,200m³ (385m³ - 1,496m³) | >1,500 m ³ | | | Suspended Solids (SS) | 30.1mg/L (13.4mg/L - 52.9mg/L) | > 800 mg/ | | | Phosphate | 7.5mg/L (3.6mg/L - 9.4mg/L) | > 25 mg/L | | | Sulphate | 132mg/L (96mg/L - 226mg/L) | > 900 mg/ | | | Total Inorganic Nitrogen (a) | 53.8mg/L (36mg/L - 73.5mg/L) | > 100 mg/ | | | BOD | 11mg/L (8mg/L - 22mg/L) | > 800 mg/ | | | COD | 913mg/L (430mg/L - 1,090mg/L) | > 2,000
mg/L | | | Oil & Grease | <5mg/L ($<5mg/L - 6mg/L$) | $> 20 \mathrm{mg/L}$ | | | Boron | $5,137\mu g/L (3,210\mu g/L - 6,180\mu g/L)$ | > 7,000 µg, | | | Iron | 1.37mg/L (0.57mg/L - 1.73mg/L) | $> 7.5 \mathrm{mg/l}$ | | | Cadmium | $<1.0\mu g/L$ ($<1.0\mu g/L$ – $<1.0\mu g/L$) | $> 1 \mu g/L$ | | | Chromium | $121\mu g/L$ (69 $\mu g/L$ – $142\mu g/L$) | > 400 μg/I | | | Copper | <10μg/L (<10μg/L - 68μg/L) | > 1,000 μg, | | | Nickel | $111\mu g/L (65\mu g/L - 128\mu g/L)$ | > 800 μg/I | | | Zinc | 62μg/L (47μg/L – 92μg/L) | > 800 µg/I | | March 2022 | Temperature | 29.4°C (24.9°C - 32.7°C) | > 43 °C | | | pH Value | 8.4 (8.3–8.5) | 6 - 10 | | | Volume Discharged | 1,059m³ (357m³ - 1,498m³) | >1,500 m ³ | | | Suspended Solids (SS) | 23.6mg/L (10.7mg/L - 84.8mg/L) | > 800 mg/ | | | Phosphate | 8.0mg/L (4.4mg/L - 10.4mg/L) | > 25 mg/L | | | Sulphate | 151mg/L (114mg/L - 199mg/L) | > 900 mg/ | | | Total Inorganic Nitrogen (a) | 49.4mg/L (32.8mg/L - 63.3mg/L) | > 100 mg/ | | Month | Parameters | Average Monitoring Results (Range in Bracket) | Limit Level | |-------|--------------|---|-----------------------| | | BOD | 9mg/L (6mg/L - 13mg/L) | > 800 mg/L | | | COD | 874mg/L (516mg/L - 1,190mg/L) | > 2,000
mg/L | | | Oil & Grease | <5mg/L ($<5mg/L$ – $<5mg/L$) | $> 20 \mathrm{mg/L}$ | | | Boron | 4,824μg/L (3,560μg/L - 5,570μg/L) | > 7,000 μg/L | | | Iron | 1.24mg/L (0.86mg/L - 1.63mg/L) | $> 7.5 \mathrm{mg/L}$ | | | Cadmium | $<1.0\mu g/L$ ($<1.0\mu g/L$ – $<1.0\mu g/L$) | > 1 μg/L | | | Chromium | $113\mu g/L$ (86 $\mu g/L$ – $143\mu g/L$) | $> 400 \mu g/L$ | | | Copper | $20\mu g/L (15\mu g/L - 23\mu g/L)$ | > 1,000 μg/L | | | Nickel | 107μg/L (80μg/L – 130μg/L) | > 800 µg/L | | | Zinc | 75μg/L (46μg/L – 113μg/L) | > 800 µg/L | #### Note: All the leachate levels and effluent quality monitoring results were below the Limit Levels in the reporting period. No action is thus required to be undertaken in accordance with the Event and Action Plan presented in *Annex F2*. # 2.3.3 Groundwater Monitoring Monitoring Requirements and Equipment According to the updated EM&A Manual of the Project with incorporation of the proposed updates under the Amendment Summary approved by EPD on 15 June 2020, groundwater monitoring was carried out at 14 perimeter groundwater monitoring wells (including 3 up-gradient wells and 11 downgradient wells) (i.e. MWX-1 to MWX-14) to monitor the groundwater quality and level of the perimeter groundwater monitoring wells at monthly interval. The Limit Levels for groundwater quality is provided in *Table 2.27* below. ⁽a) Total Inorganic Nitrogen include Ammoniacal-nitrogen, Nitrite-nitrogen and Nitrate-nitrogen. Table 2.27 Limit Levels for Groundwater Quality | Location | Limit Levels | _ | |----------|------------------------------|--------------| | | Ammoniacal-nitrogen (mg L-1) | COD (mg L-1) | | MWX-1 | 5.00 | 30 | | MWX-2 | 5.00 | 30 | | MWX-3 | 5.00 | 30 | | MWX-4 | 7.63 | 36 | | MWX-5 | 5.00 | 30 | | MWX-6 | 5.00 | 46 | | MWX-7 | 6.55 | 36 | | MWX-8 | 15.85 | 50 | | MWX-9 | 7.30 | 71 | | MWX-10 | 5.00 | 30 | | MWX-11 | 5.00 | 30 | | MWX-12 | 5.00 | 30 | | MWX-13 | 5.00 | 30 | | MWX-14 | 5.00 | 30 | A bladder pump with Teflon sampling tube and adjustable discharge rates was used for purging and taking of groundwater sample from the monitoring wells. Filtered groundwater samples were collected by connecting a disposable in-line filter system to the tubing of the sampling pump, prior to storage and analysis by ALS Technichem (HK) Pty Ltd. (HOKLAS Registration No. 066). A portable dip meter with 5mm accuracy was used for measurement of groundwater level at each well. The dip meter has an audio indicator of the water level and was checked before use. The measurements of pH and electrical conductivity (EC) were undertaken *in situ*. *In situ* monitoring instruments in compliance with the specifications listed under Section 4.3.2 of the updated EM&A Manual were used to undertake the groundwater quality monitoring for the Project. Details of the equipment used and the monitoring locations are summarised in *Table 2.28* and illustrated in *Figure 2.1*, respectively. Table 2.28 Groundwater Monitoring Details | Monitoring
Location | Frequency | Param | eter | Monitoring
Dates | Equipment | |--|-----------|--|---|--|--| | All groundwater monitoring wells (MWX-1 to MWX-14) | Monthly | Water level pH EC COD BOD5 TOC Ammoniacal-nitrogen Nitrate-nitrogen Nitrite-nitrogen TKN TN Sulphate Sulphide Carbonate Bicarbonate Phosphate | Chloride Sodium Potassium Calcium Magnesium Nickel Manganese Chromium Cadmium Copper Lead Iron Zinc Mercury Boron | 4, 11 Jan 2022,
15, 18 Feb
2022,
14, 15 Mar
2022 | YSI Professional DSS (S/N: 17B102764) YSI Professional DSS (S/N: 15H103928) | Monitoring Schedule for the Reporting Month The schedule for groundwater quality monitoring during the reporting period is provided in *Annex C*. Results and Observations The groundwater quality monitoring results and detailed monitoring results are summarised in *Table 2.29* and provided in *Annex F5*, respectively. Table 2.29 Summary of Groundwater Monitoring Results in the Reporting Period | Location | Ammonia | acal-nitro | ogen (mg | L-1) | COD (mg | g L-1) | | | |----------|---------------------------|------------|----------|-------------------------------|---------|--------|--------|--------| | | Monitoring Results | | esults | ults Limit Monitoring Results | | | esults | Limit | | | Average | Min | Max | Levels | Average | Min | Max | Levels | | MWX-1 | 0.23 | 0.17 | 0.34 | 5.00 | 7.67 | 4 | 10 | 30 | | MWX-2 | 0.01 | < 0.01 | 0.02 | 5.00 | 2.67 | <2 | 4 | 30 | | MWX-3 | 1.26 | 1.07 | 1.45 | 5.00 | 16.00 | 15 | 17 | 30 | | MWX-4 | 6.93 | 5.91 | 7.6 | 7.63 | 38.33 | 34 | 43 | 36 | | MWX-5 | 2.70 | 1.9 | 3.8 | 5.00 | 25.67 | 24 | 28 | 30 | | MWX-6 | 3.88 | 3.83 | 3.95 | 5.00 | 46.67 | 44 | 50 | 46 | | MWX-7 | 6.05 | 5.7 | 6.26 | 6.55 | 13.33 | 11 | 15 | 36 | | MWX-8 | 13.10 | 11.8 | 14.2 | 15.85 | 31.33 | 20 | 45 | 50 | | MWX-9 | 4.95 | 3.29 | 6.42 | 7.30 | 20.33 | 17 | 26 | 71 | | MWX-10 | 0.02 | < 0.01 | 0.03 | 5.00 | 13.00 | 9 | 20 | 30 | | MWX-11 | 0.10 | 0.06 | 0.12 | 5.00 | 4.00 | 2 | 8 | 30 | | MWX-12 | < 0.01 | < 0.01 | < 0.01 | 5.00 | 5.33 | 4 | 7 | 30 | | MWX-13 | 0.05 | < 0.01 | 0.11 | 5.00 | 4.00 | <2 | 5 | 30 | | MWX-14 | < 0.01 | < 0.01 | < 0.01 | 5.00 | 3.00 | <2 | 4 | 30 | Limit Levels exceedances were recorded for groundwater monitoring in the reporting period and actions in accordance with the Event and Action Plan presented in *Annex F2* were undertaken. The groundwater quality (COD) exceedances at MWX-4 and MWX-6 on 15 February 2022 and groundwater quality (COD) exceedance at MWX-4 on 15 March 2022 were considered non Project-related. Investigation reports of the exceedances are presented in Annex F6. The ET will keep track on the monitoring data and ensure Contractor's compliance of the environmental requirements. ## 2.4 LANDFILL GAS MONITORING # 2.4.1 Monitoring Requirements According to the updated EM&A Manual of the Project, landfill gas monitoring was carried out at the perimeter of the waste boundary (monitoring wells), area between the SENTX Site boundary and the waste boundary (surface emission), occupied on-site building, service voids, utilities pit and manholes in the vicinity of the SENTX (build-up of landfill gas) during the operation/restoration phase. The Limit Levels for landfill gas monitoring is provided in *Table 2.30* below. Table 2.30 Limit Levels for Landfill Gas Constituents | Parameters | Monitoring Location | Limit Level (% (v/v)) | | | |-------------------------------|--|-----------------------|----------------|--| | Perimeter Landfill Gas Mon | | • | | | | Methane & Carbon Dioxide | Ü | Methane | Carbon Dioxide | | | | LFG1 | 1.0 | 2.2 | | | | LFG2 | 1.0 | 4.2 | | | | LFG3 | 1.0 | 6.3 | | | | LFG4 | 1.0 | 7.0 | | | | LFG5 | 1.0 | 3.4 | | | | LFG6
 1.0 | 9.1 | | | | LFG7 | 1.0 | 1.5 | | | | LFG8 | 1.0 | 1.7 | | | | LFG9 | 2.5 | 1.7 | | | | LFG10 | 1.0 | 1.6 | | | | LFG11 | 3.0 | 2.0 | | | | LFG12 | 13.2 | 1.5 | | | | LFG13 | 22.5 | 2.7 | | | | LFG14 | 1.0 | 1.6 | | | | LFG15 | 18.2 | 2.0 | | | | LFG16 | 1.0 | 1.7 | | | | LFG17 | 10.5 | 2.1 | | | | LFG18 | 2.3 | 1.9 | | | | LFG19 | 6.3 | 3.1 | | | | LFG20 | 1.0 | 4.2 | | | | LFG21 | 1.0 | 4.3 | | | | LFG22 | 1.0 | 3.9 | | | | LFG23 | 1.0 | 10.3 | | | | LFG24 | 1.0 | 4.0 | | | | GP1 | 1.0 | 8.5 | | | | GP2 (shallow) | 1.0 | 11.4 | | | | GP2 (deep) | 1.0 | 10.4 | | | | GP3 (shallow) | 1.0 | 3.9 | | | | GP3 (deep) | 1.0 | 1.9 | | | | GP4 (shallow) | 1.0 | 2.3 | | | | GP4 (deep) | 1.0 | 5.6 | | | | GP5 (shallow) | 1.0 | 9.5 | | | | GP5 (deep) | 1.0 | 7.5 | | | | GP6 | 1.0 | 7.8 | | | | GP7 | 1.0 | 4.5 | | | | GP12 | 1.0 | 2.3 | | | | GP15 | 1.0 | 2.2 | | | | P7 | 1.0 | 2.5 | | | | P8 | 1.0 | 1.7 | | | | P9 | 1.0 | 2.7 | | | Service Voids, Utilities Pits | and Manholes | | | | | Methane (or flammable gas) | Service voids, utilities pits and manholes | 1% by volume | | | | Parameters | Monitoring Location | Limit Level (% (v/v)) | | | | | | |--|------------------------------------|------------------------|--|--|--|--|--| | Permanent Gas Monitoring System | | | | | | | | | Methane (or flammable gas) | Permanent Gas
Monitoring System | 1% by volume (20% LEL) | | | | | | | Area Between the SENTX Site Boundary and Waste Boundary (Surface Emission) | | | | | | | | | Flammable gas Area between SENTX 30 ppm site boundary and waste boundary | | | | | | | | #### Notes: (a) Limit Levels established based on the pre-operation phase baseline and additional landfill gas monitoring results in the Pre-operation Baseline Monitoring Report. Gas analysers in compliance with the specifications listed under Section 5.4.1 of the updated EM&A Manual were used to monitor the gas parameters at the landfill gas monitoring wells, service voids, utilities pits and manholes. The gas analyser was calibrated by a laboratory accredited under HOKLAS at yearly intervals and checked before use to ensure the validity and accuracy of the results. A portable dip meter was used to monitor the water level in the monitoring wells. Permanent gas monitoring systems with pre-set alarm levels for methane at 20% lower explosive limit (LEL, equivalent to 1% methane gas (v/v)) were installed and operated in all occupied on-site buildings at SENTX. A central control panel is equipped to alert site personnel when the gas concentration at any detector reaches the alarm level. Flammable gas detector in compliance with the specifications listed under Section 5.4.1 of the updated EM&A Manual was used to measure flammable gas concentration. Flammable gas surface emission survey was conducted at a slow pace with the inlet tube of the meter probe a few centimeters above ground surface to detect flammable gas emitted from the ground surface. Bulk gas samples were collected into inert sample containers (i.e. Tedlar Bag) and transferred to ALS Technichem (HK) Pty Ltd. (HOKLAS Registration No. 066) laboratory within 24 hours of collection for direct analysis on a gas chromatography within 48 hours after collection. The equipment used in the landfill gas monitoring programme is summarised in *Table 2.31*. The landfill gas monitoring locations for perimeter landfill gas monitoring wells and service voids, utilities and manholes along the Site boundary and within the SENTX site are illustrated in *Figure 2.3 - 2.4* and *Annex G1*, respectively. Table 2.31 Landfill Gas Monitoring Details | Monitoring Location | Frequency | Parameter | Monitoring
Dates | Equipment | |--|------------|--|---|--| | Perimeter landfill gas
monitoring wells (LFG1 to
LFG24, P7 to P9, GP1 to
GP7, GP12 and GP15) | Monthly | MethaneCarbon dioxideOxygenAtmospheric pressure | 18 Jan 2022,
9 Feb 2022,
8 Mar 2022 | GA5000
(S/N:
G507306) | | Service voids, utilities and manholes along the Site boundary and within the SENTX Site (UU1 to UU28) | Monthly | Methane Carbon dioxide Oxygen | 20 Jan 2022,
11 Feb 2022,
11 Mar 2022 | GA5000
(S/N:
G507306) | | Permanent gas monitoring system in all occupied onsite buildings | Continuous | Methane (or
flammable gas) by
permanent gas
monitoring system | 1 Jan – 31
Mar 2021 | Permanent
gas
monitoring
system | | Areas between the SENTX
Site boundary and the
waste boundary and
location of vegetation
stress | Quarterly | Flammable gas
emitted from the
ground surface | 15 Feb 2022 | GMI Leak
Surveyor
(S/N:
554846) | | Bulk gas sampling at least
2 of the perimeters LFG
monitoring wells | Quarterly | MethaneCarbon dioxideOxygenNitrogenCarbon monoxideOther flammable gas | 16 Feb 2022 | Gas
sampling
pump and
Tedlar bags | Monitoring Schedule for the Reporting Month The schedule for dust monitoring during the reporting period is provided in *Annex C*. Results and Observations The landfill gas monitoring results are summarised and provided in *Tables* 2.32 - 2.35 and *Annex G2*, respectively. Table 2.32 Summary of Landfill Gas Monitoring Results at Perimeter LFG Monitoring Wells in the Reporting Period | Location | Methane | (% (v/v) |) | | Carbon D | ioxide | (% (v/v)) | | |---------------|----------|----------|------|-----------|----------|---------|-----------|-----------| | | Monitori | ng Resu | ılts | Limit | Monitori | ng Resu | ılts | Limit | | | Average | Min | Max | Level (a) | Average | Min | Max | Level (a) | | LFG1 | 0.0 | 0.0 | 0.0 | 1.0 | 0.1 | 0.0 | 0.1 | 2.2 | | LFG2 | 0.0 | 0.0 | 0.0 | 1.0 | 0.2 | 0.0 | 0.4 | 4.2 | | LFG3 | 0.0 | 0.0 | 0.0 | 1.0 | 0.3 | 0.0 | 0.9 | 6.3 | | LFG4 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.1 | 7.0 | | LFG5 | 0.0 | 0.0 | 0.0 | 1.0 | 0.2 | 0.0 | 0.3 | 3.4 | | LFG6 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.1 | 9.1 | | LFG7 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.1 | 1.5 | | LFG8 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.1 | 1.7 | | LFG9 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 | 0.1 | 1.7 | | LFG10 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.1 | 1.6 | | LFG11 | 0.0 | 0.0 | 0.0 | 3.0 | 0.2 | 0.0 | 0.3 | 2.0 | | LFG12 | 0.0 | 0.0 | 0.0 | 13.2 | 0.0 | 0.0 | 0.1 | 1.5 | | LFG13 | 7.9 | 0.0 | 17.4 | 22.5 | 0.4 | 0.0 | 0.9 | 2.7 | | LFG14 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.1 | 1.6 | | LFG15 | 0.0 | 0.0 | 0.0 | 18.2 | 0.1 | 0.0 | 0.3 | 2.0 | | LFG16 | 0.0 | 0.0 | 0.0 | 1.0 | 0.1 | 0.0 | 0.1 | 1.7 | | LFG17 | 0.0 | 0.0 | 0.0 | 10.5 | 0.0 | 0.0 | 0.1 | 2.1 | | LFG18 | 0.0 | 0.0 | 0.0 | 2.3 | 0.1 | 0.1 | 0.1 | 1.9 | | LFG19 | 0.0 | 0.0 | 0.0 | 6.3 | 0.0 | 0.0 | 0.1 | 3.1 | | LFG20 | 0.0 | 0.0 | 0.0 | 1.0 | 1.2 | 0.4 | 2.5 | 4.2 | | LFG21 | 0.0 | 0.0 | 0.0 | 1.0 | 2.1 | 2.0 | 2.3 | 4.3 | | LFG22 | 0.0 | 0.0 | 0.0 | 1.0 | 1.2 | 0.5 | 1.8 | 3.9 | | LFG23 | 0.0 | 0.0 | 0.0 | 1.0 | 1.5 | 0.9 | 2.1 | 10.3 | | LFG24 | 0.0 | 0.0 | 0.0 | 1.0 | 0.8 | 0.7 | 0.8 | 4.0 | | GP1 | 0.0 | 0.0 | 0.0 | 1.0 | 1.1 | 0.1 | 3.1 | 8.5 | | GP2 (shallow) | 0.0 | 0.0 | 0.1 | 1.0 | 0.1 | 0.1 | 0.1 | 11.4 | | GP2 (deep) | 0.0 | 0.0 | 0.1 | 1.0 | 0.1 | 0.1 | 0.1 | 10.4 | | GP3 (shallow) | 0.0 | 0.0 | 0.0 | 1.0 | 1.2 | 0.1 | 3.3 | 3.9 | | GP3 (deep) | 0.0 | 0.0 | 0.0 | 1.0 | 0.3 | 0.1 | 0.7 | 1.9 | | GP4 (shallow) | 0.0 | 0.0 | 0.0 | 1.0 | 0.2 | 0.2 | 0.2 | 2.3 | | GP4 (deep) | 0.0 | 0.0 | 0.0 | 1.0 | 0.1 | 0.1 | 0.1 | 5.6 | | GP5 (shallow) | 0.0 | 0.0 | 0.0 | 1.0 | 0.1 | 0.1 | 0.1 | 9.5 | | GP5 (deep) | 0.0 | 0.0 | 0.0 | 1.0 | 0.1 | 0.1 | 0.1 | 7.5 | | GP6 | 0.0 | 0.0 | 0.0 | 1.0 | 4.5 | 0.4 | 6.7 | 7.8 | | GP7 | 0.0 | 0.0 | 0.0 | 1.0 | 0.1 | 0.1 | 0.2 | 4.5 | | GP12 | 0.0 | 0.0 | 0.0 | 1.0 | 0.5 | 0.2 | 0.6 | 2.3 | | GP15 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.1 | 2.2 | | P7 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.1 | 2.5 | | P8 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.1 | 1.7 | | P9 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.1 | 2.7 | ### **Notes:** (a) Limit Levels established based on the pre-operation phase baseline and additional landfill gas monitoring results in the Pre-operation Baseline Monitoring Report. Table 2.33 Summary of Landfill Gas Monitoring Results at Service Voids, Utilities Pits and Manholes in the Reporting Period | Location | Methane (% | (v/v)) | | | |----------|--------------|--------------------|---------------------|--------------| | | Monitoring I | Results | | Limit Levels | | | Average | Min | Max | | | UU01 | 0.0 | 0.0 | 0.1 | 1.0 | | UU02 | 0.0 | 0.0 | 0.1 | 1.0 | | UU03 | 0.1 | 0.0 | 0.2 | 1.0 | | UU04 | 0.1 | 0.0 | 0.2 | 1.0 | | UU05 | 0.1 | 0.0 | 0.2 | 1.0 | | UU06 | 0.1 | 0.0 | 0.2 | 1.0 | | UU07 | 0.1 | 0.0 | 0.3 | 1.0 | | UU08 | 0.1 | 0.0 | 0.3 | 1.0 | | UU09 | 0.0 | 0.0 | 0.0 | 1.0 | | UU10 | 0.0 | 0.0 | 0.0 | 1.0 | | UU11 | 0.0 | 0.0 | 0.0 | 1.0 | | UU12 | Voided due | to latest site pro | gramme and on-going | 1.0 | | | | operation v | work | | | UU13 | 0.0 | 0.0 | 0.0 | 1.0 | | UU14 | 0.0 | 0.0 | 0.0 | 1.0 | | UU15 | 0.0 | 0.0 | 0.0 | 1.0 | | UU16 | 0.0 | 0.0 | 0.0 | 1.0 | | UU17 | Voided due | to latest site pro | gramme and on-going | 1.0 | | | | operation v | work | | | UU18 | 0.0 | 0.0 | 0.0 | 1.0 | | UU19 | 0.1 | 0.0 | 0.2 | 1.0 | | UU20 | 0.0 | 0.0 | 0.0 | 1.0 | | UU21 | 0.0 | 0.0 | 0.0 | 1.0 | | UU22 | 0.0 | 0.0 | 0.0 | 1.0 | | UU23 | 0.0 | 0.0 | 0.0 | 1.0 | | UU24 | 0.0 | 0.0 | 0.0 | 1.0 | | UU25 | 0.0 | 0.0 | 0.0 | 1.0 | | UU26 | 0.1 | 0.0 | 0.2 | 1.0 | | UU27 | 0.0 | 0.0 | 0.1 |
1.0 | | UU28 | 0.0 | 0.0 | 0.0 | 1.0 | Table 2.34 Summary of Landfill Gas Bulk Gas Sampling Monitoring Results in the Reporting Period | Parameters | Limit Level | LFG14 | Limit Level | LFG15 | |------------------------------|-------------|---------|-------------|---------| | | (LFG14) (a) | | (LFG15) (a) | | | Methane (% (v/v)) | 1.0 | 0.0 | 18.2 | 0.0 | | Carbon Dioxide ($\%$ (v/v)) | 1.6 | 0.119 | 2.0 | 0.110 | | Oxygen ($\%$ (v/v)) | - | 10.2 | - | 20.1 | | Nitrogen (% (v/v)) | - | 90.5 | - | 80.3 | | Carbon Monoxide (% | - | < 0.020 | - | < 0.020 | | (v/v) | | | | | | Hydrogen ($\%$ (v/v)) | - | < 0.020 | - | < 0.020 | | Ethane (ppmv) | - | <1.0 | - | <1.0 | | Propane (ppmv) | - | <1.0 | - | <1.0 | | Butane (ppmv) | - | <1.0 | - | <1.0 | ### **Notes:** **(a)** Limit Levels established based on the pre-operation phase baseline and additional landfill gas monitoring results in the Pre-operation Baseline Monitoring Report. Table 2.35 Summary of Flammable Gas Surface Emission Monitoring Results in the Reporting Period | GPS Coordinates | | Monitoring Results (ppm) | Limit Level (ppm) | | | |-----------------|---------------|--------------------------|-------------------|--|--| | Latitude (N) | Longitude (E) | , | | | | | 22°16′36″ | 114°16′36″ | 3 | 30 | | | | 22°16′24″ | 114°16′36″ | 6 | | | | The alarm of the permanent gas monitoring systems with pre-set levels for methane at 20% lower explosive limit (LEL, equivalent to 1% methane gas (v/v)) was not triggered at all occupied on-site buildings at SENTX from January to March 2022. All the landfill gas monitoring results were below the Limit Levels in the reporting period. No action is thus required to be undertaken in accordance with the Event and Action Plan presented in *Annex G3*. ### 2.5 LANDSCAPE AND VISUAL MONITORING ## 2.5.1 Monitoring Requirements According to the updated EM&A Manual of the Project, the monthly landscape and visual audit was conducted on 27 January, 24 February and 18 March 2022 to monitor the implementation of the landscape and visual mitigation measures during operation/restoration phase. All relevant environmental mitigation measures listed in the approved EIA Report and the updated EM&A Manual and their implementation status are summarised in *Annex B*. #### 2.5.2 Results and Observations The Contractor has implemented environmental mitigation measures as stated in the approved EIA Report and the EM&A Manual. Regarding the landscape and visual audit, the Contractor was reminded to maintain the advance screen planting works as soon as possible to ensure effective screening of views of project works from the High Junk Peak Trail. The Contractor has considered the mitigation measures during the design phase, including the preparation of the Construction Drawings and Detailed Landscape Design Drawings. #### 2.6 EM&A SITE INSPECTION Site inspections were carried out on a weekly basis with the Contractor, IEC and ER to monitor the implementation of proper environmental pollution control and mitigation measures for air quality, noise, surface water quality and waste management under the Project. In the reporting period, 13 site inspections were carried out on 6, 13, 20, 27 and 31 January 2022 and 10, 17 and 24 February 2022 and 3, 10, 17, 24 and 31 March 2022. Key observations during the site inspections are summarized in *Table 2.36*. Table 2.36 Key Observations Identified during the Site Inspections in this Reporting Period | Inspection Date | Environmental Observations and Recommendations | |------------------|---| | 6 January 2022 | The Contractor shall replace the faded NRMM label displayed on the | | | generators near DP3 and maintenance building. | | | The Contractor shall provide drip trays for the chemicals stored near | | | DG house and Chunwo container area. | | | The Contractor shall remove the stagnant water and general refuse | | | accumulated at the channel near sump house 3. | | | The Contractor shall remove the general refuse accumulated near | | | water services house regularly to minimise odour and pest issues. | | 13 January 2022 | The Contractor shall remove the stagnant water and general refuse | | 10 junium j 2022 | accumulated at the channel near sump house 3. | | | The Contractor shall clean up the oil spill at the breaker near buttress | | | wall, handle the clean-up materials as chemical waste and maintain | | | the break to avoid oil spillage, if necessary. | | | | | | The Contractor shall dispose of the emptied chemical containers at Call 4 Y and pear numb boyse 3 as sharpied waste in the sharpied. | | | Cell4X and near pump house 3 as chemical waste in the chemical waste cabinet. | | | | | | The Contractor shall remove the general refuse accumulated near | | | DP3 and dispose of the waste regularly to minimize odour and pest | | 20.12022 | issues. | | 20 January 2022 | The Contractor shall clean up the oil spillage at the generator near | | | GVL building and handle the clean-up materials as chemical waste. | | | The Contractor shall provide drip trays for the chemicals stored near | | | DP3 and Chunwo container area. | | | The Contractor shall segregate the construction waste and materials | | | near sediment trap and dispose of the waste regularly. | | | • The Contractor shall maintain site tidiness and remove the general | | | refuse accumulated at the channel near sump house 3, RC15, u | | | channel near Chunwo container area and DP6 and dispose of the | | | waste regularly to minimise odour and pest issues. | | 27 January 2022 | The Contractor shall remove the stagnant water accumulated at the | | | channel near sump house 3 regularly and spray larvicides for | | | mosquito control, if necessary. | | | The Contractor shall maintain site tidiness and remove the general | | | refuse accumulated near town gas plant and dispose of the emptied | | | chemical containers as chemical waste. | | 31 January 2022 | The Contractor shall clean up the oil spillage near sediment trap and | | | DP6 channel and handle the clean-up materials as chemical waste. | | | The Contractor shall provide drip trays for the chemicals stored near | | | sediment trap. | | | The Contractor shall dispose of the emptied chemical containers near | | | sediment trap as chemical waste in accordance with the COP. | | | The Contractor shall remove the general refuse accumulated near | | | RC15 and at the channel near Chun Wo container area and dispose of | | | the waste regularly. | | 10 February 2022 | The Contractor shall provide a NRMM label on the crane near sump | | | house 4. | | | The Contractor shall remove the general refuse accumulated at the | | | | | | channel near sump house 3 and dispose of the waste regularly to | | | minimise odour and pest issues. | | Inspection Date | Environmental Observations and Recommendations | |------------------|---| | 17 February 2022 | The Contractor shall provide drip tray for the chemical stored near | | | X10a. | | | The Contractor shall remove the general refuse accumulated near | | | X10a, Cell 3X perimeter bund and at the channel near sump house 3 | | | and VWF, and dispose of the waste regularly. | | 24 February 2022 | The Contractor shall cover the water tank near sediment trap with lid | | , | to minimise pest issues. | | | The Contractor shall remove the stagnant water accumulated at the | | | channel near sump house 3 and at Cell 4X regularly and spray | | | larvicides for mosquito control, if necessary. | | | The Contractor shall remove the stagnant water accumulated in the | | | drip trays at Wetsep near sediment trap. | | 3 March 2022 | The Contractor shall remove the general refuse accumulated at the | | 5 Waren 2022 | channel near sump house 3 and along Western site boundary and | | | dispose of the waste regularly. | | | The Contractor shall remove the stagnant water accumulated in the | | | <u> </u> | | 10 March 2022 | drip tray for generator at Cell 4X. | | 10 March 2022 | The Contractor shall display a NRMM label on the excavator near P.015 | | | RC15. | | | The Contractor shall remove the general refuse accumulated at the | | | channel near sump house 2 and 3 and dispose of the waste regularly. | | | • The Contractor shall clean up the oil spillage near sump house 4 and | | | handle the clean-up materials as chemical waste. | | | • The Contractor shall provide drip tray for the chemical stored at Cell | | | 4X. | | 17 March 2022 | The Contractor shall remove the stagnant water accumulated at the | | | channel near pump house 3 regularly, and spray larvicides for | | | mosquito control, if necessary. | | | The Contractor shall dispose of the waste and remove the stagnant | | | water accumulated at the refuse skip near DP6 regularly to minimise | | | odour and pest issues. | | 24 March 2022 | The Contractor shall display a NRMM label on the excavator near | | | EPD building. | | | The Contractor shall clean up the oil spillage at the excavator near | | | pump house 3 and handle the clean-up materials as chemical waste. | | | The Contractor shall remove the general refuse and stagnant water | | | accumulated near Towngas plant and DP6 and dispose of the waste | | | regularly to minimise odour and pest issues. | | 31 March 2022 | The Contractor shall remove the stagnant water accumulated at the | | | channel near sump house 3 regularly and spray larvicides for | | | mosquito control, if necessary. | | | The Contractor shall remove the general refuse and stagnant water | | | accumulated at the refuse skip near DP6 and Towngas plant and | | | | | | dispose of the waste regularly to minimise odour and pest issues. | The Contractor has rectified all of the observations identified
during environmental site inspections in the reporting period. Key environmental deficiencies identified and the corresponding rectification actions are presented in *Table 2.37*. Table 2.37 Summary of Environmental Deficiencies Identified and Corresponding Additional Control Measures | Deficiencies | Rectifications Implemented | Proposed Additional
Control Measures | |---|---|--| | Surface Water | | | | Intercepting channels & drainage system | Reviewed drainage plan. | Provision of additional drainage channels. Expedite the construction of permanent sediment trap and discharge culverts. | | DP channels (design & regular silt removal) | Carried out regular maintenance and cleaning of channels. DP4 channel: Area near the channel was paved with concrete and a bund was built. DP6 channel: Gravel piles on the channel were covered with concrete which serve as blocks for running water and to divide the channel into several sections. A pump was placed in the water zone in the upstream section to pump water to the Wetsep for treatment prior to the discharge to the last section before the weir plate. DP6: Pipes through the gravel piles between different channel sections were covered with geotextiles to block debris and silt. | N.A. | | Stockpiles & exposed soil | Installed silt fencing near surface
water channel along DP6 channel. | Improve soil covering.Compaction and cover for stockpiles and soil slopes. | | Wetsep (treatment capacity & number) | Reviewed Wetsep capacity. Chemicals dosage of the Wetsep was increased to enhance the efficiency. | Install additional Wetsep. | | Backflow / ponding during heavy rainfall | Raised with EPD (LDG) and CEDD. | N.A. | ## 2.7 WASTE MANAGEMENT STATUS The Contractor has registered as a chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting. As informed by the Contractor, waste generated during this reporting period include mainly inert C&D materials. Reference has been made to the waste flow table prepared by the Contractor. The quantities of different types of wastes and imported fill materials are summarised in *Table 2.38*. Table 2.38 Quantities of Different Waste Disposed and Imported Fill Materials | Month/
Year | Inert C&D
Materials ^(a)
(in '000m ³) | | ted Fill
Okg) ^(b) | Inert
Construction
Waste Re-
used | Non-inert
Construction
Waste (c)
(in '000m³) | Recyclable
Materials ^(d)
(in '000kg) | Chemical
Wastes
(in
'000kg) | |----------------|---|------|---------------------------------|--|---|---|--------------------------------------| | | | Rock | Soil | (in '000m³) | | | | | 1 - 31 | 0.273 | 0 | 0 | 0 | 0.035 | 0 | 0.800 | | Jan 2022 | | | | | | | | | 1 - 28 | 1.284 | 0 | 0 | 0 | 0.016 | 0 | 0.460 | | Feb 2022 | | | | | | | | | 1 - 31 | 0.039 | 0 | 0 | 0 | 0.010 | 0 | 0.800 | | Mar | | | | | | | | | 2022 | | | | | | | | #### Notes: - (a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill. Density assumption: 1.6 (kg/L) for public fill. - (b) Imported fill refers to materials generated from other project for on-site reuse. - (c) Non-inert construction wastes include general refuse disposed at landfill. Density assumption: 0.9 (kg/L) for general refuse. - (d) Recyclable materials include metals, paper, cardboard, plastics and others. ### 2.8 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES A summary of the Environmental Mitigation Implementation Schedule is presented in *Annex B*. The necessary mitigation measures were implemented properly for the Project. # 2.9 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT The operation/ restoration phase air quality, noise and landfill gas monitoring results complied with the Action and Limit Levels in the reporting period. Three exceedances of the Limit Level for groundwater (COD) were recorded for water quality impact monitoring in the reporting period. The groundwater (COD) exceedances at MWX-4 and MWX-6 on 15 February 2022 and groundwater (COD) exceedance at MWX-4 on 15 March 2022 were considered non Project related. Cumulative statistics on exceedances is provided in *Annex H*. # 2.10 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS There were no complaints, notification of summons or prosecution recorded in the reporting period. Statistics on complaints, notifications of summons and successful prosecutions are summarised in *Annex H*. #### 3 CONCLUSION AND RECOMMENDATION This Quarterly EM&A Report presents the findings of the EM&A activities undertaken during the period from 1 January to 31 March 2022 in accordance with the updated EM&A Manual and the requirements of the Environmental Permit (*EP-308/2008/B*). Air quality quality (24-hour TSP, odour, thermal oxidiser, landfill gas flare and landfill gas generator stack emission, ambient VOCs, ammonia and H_2S), noise, water quality (surface water, leachate and groundwater) and landfill gas monitoring were carried out in the reporting period. Results for air quality, noise and landfill gas monitoring complied with the Action and Limit Levels in the reporting period. Three exceedances of the Limit Level for groundwater (COD) were recorded in the reporting period. Thirteen environmental site inspections were carried out during the reporting period. Environmental deficiencies were identified during the site inspection and the Contractor has proposed additional control measures to rectify the deficiencies. There were no complaints, notification of summons or prosecution recorded in the reporting period. It is noted that most environmental pollution control and mitigation measures were properly implemented and the construction and operation activities of the Project did not introduce any adverse impact to the sensitive receivers in the reporting period. Yet, some environmental deficiencies were identified during the reporting period and additional control measures have been proposed by the Contractor to rectify the corresponding deficiencies. The monitoring programme has been reviewed and was considered as adequate to cater for the nature of works in progress. Change to the monitoring programme was thus not recommended at this stage. The monitoring programme will be evaluated as appropriate in the next reporting period. The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures. # Annex A # Work Programme | SA2.5 Construction (Initial Works) SA2.5.02 Advance Works & Site Establishment | 1153 12-Apr-18 07-Jun-21 705
1148 12-Apr-18 02-Jun-21 35 | | | |--
---|---|--| | SA2.5.02.01 Site Establishment & Mobilization 5.02.01 52-1000 Site Mobilization for Parts X1 & X2 5.02.01 52-1100 Site Mobilization for Parts X3, X4 & X5 | 333 12-Apr-18 10-Mar-19 820 30 31-Dec-18 29-Jan-19 820 11-1100: FS, 11-1200: FS 30 12-Apr-18 11-May-18 1083 11-1300: FS, 11-1400: FS, 11-1500: FS | 52-1300: FS, M 3. 1: FS, M 3. 2: FS 52-1300: FS, M 3. 1: FF | | | 5.02.01 52-1200 Temporary Office for Employer / ER / IC 5.02.01 52-1300 Hoarding and Fencing Works | 60 10-Oct-18 08-Dec-18 0 23-1300: FS
40 30-Jan-19 10-Mar-19 820 52-1000: FS, 52-1100: FS | 11-1700: SS, M 3. 1: FS
32-1500: FS, M10. 1: FS -26, M10. 2: FS -13, M10. 3: FS | | | SA2.5.02.02 Site Survey & Investigation Works for Parts X1 & X2 5.02.02 52-1400 Condition Survey 5.02.02 52-1500 Topographic Survey | 50 31-Dec-18 18-Feb-19 840 25 31-Dec-18 24-Jan-19 840 11-1100: FS, 11-1200: FS 20 31-Dec-18 19-Jan-19 845 11-1100: FS, 11-1200: FS | 52-1600: FS
52-1600: FS | | | 5.02.02 52-1600 Site inspection, Review of Condition Survey Report SA2.5.02.03 Site Survey & Investigation Works for Parts X3, X4 & X5 5.02.03 52-1700 Condition Survey | 25 25-Jan-19 18-Feb-19 840 52-1500: FS, 52-1400: FS 50 12-Apr-18 31-May-18 1103 25 12-Apr-18 06-May-18 1103 11-1300: FS, 11-1400: FS, 11-1500: FS | 32-1500: FS 52-1900: FS | | | 5.02.03 52-1800 Topographic Survey 5.02.03 52-1900 Site inspection, Review of Condition Survey Report | 20 12-Apr-18 01-May-18 1108 11-1300: FS, 11-1400: FS, 11-1500: FS
25 07-May-18 31-May-18 1103 52-1700: FS, 52-1800: FS | 52-1900: FS 32-1500: FS | | | SA2.5.02.04 Environmental Monitoring | 975 02-Oct-18 02-Jun-21 35 120 02-Oct-18 29-Jan-19 0 23-1600: FS 120 02-Oct-18 29-Jan-19 0 23-1600: FS | 52-2200: SS 60
52-2200: SS 60 | | | 5.02.04 52-2200 Conduct Baseline Monitoring for Construction (one month) 5.02.04 52-2300 Conduct Baseline Monitoring for Operation (one year) SA2.5.03 Civil Engineering Works | 30 01-Dec-18 30-Dec-18 0 52-2000: SS 60, 52-2100: SS 60 365 03-Jun-20 02-Jun-21 35 32-1500: FS -400, 53-4500: FS 748 13-Jan-19 29-Jan-21 834 | 11-1100: FS
12-1400: FS | | | SA2.5.03.0 Buttress Wall 5.03.0 53-1000 Section adj. SENT | 475 02-Mar-19 18-Jun-20 83 300 13-Apr-19 06-Feb-20 96 11-1300: FS, 23-2500: FS, 53-3000: FS, 31-1200: FS 11-1400: FS | S, 53-1100: FS, 53-1300: FS, 53-3100: FS, M 3. 5: FS -150, M 3. 7: FS | | | 5.03.0 53-1100 Diversion of SENT Landfill Gas Pipe 5.03.0 53-1200 Section at Cell 4 | 45 07-Feb-20 22-Mar-20 96 23-2500: FS, 53-1000: FS
400 02-Mar-19 04-Apr-20 83 11-1300: FS, 23-2500: FS, 53-3000: FS, 11-1400: FS | 53-1300: FS, 54-4000: FS, M 3. 3: FS
53-1300: FS, 53-3100: FS, M 3. 7: FS, M 3. 6: FS -200 | | | 5.03.0 53-1300 Install Landfill Gas Pipe on Buttress Wall SA2.5.03.1 Landfill Cell 1 | 75 05-Apr-20 18-Jun-20 83 41-1500: FS, 53-1100: FS, 53-1200: FS, 53-1000: FS | | | | 5.03.1 53-1400 Earth bund (Eastern) 5.03.1 53-1500 Earth bund (Southern) | 90 04-Aug-19 01-Nov-19 9 11-1100: FS, 23-2500: FS, 53-4200: FS, 53-2800: FS 90 26-Apr-19 24-Jul-19 314 11-1100: FS, 23-2500: FS, 53-2800: FS | 53-2000: FS, 53-2300: FS, 63-1300: FS, 63-1000: FS, 63-1100: FS, 63-1200: FS, 63-1200: FS, 63-1300: FS, M 4. 2: FS 53-2000: FS, 53-2200: FS, 53-2300: FS, 53-3400: FS, | | | 5.03.1 53-1600 Earth bund (Western) | 90 13-Jan-19 12-Apr-19 417 11-1100: FS, 23-2500: FS | 53-2000: FS, 53-2000: FS, 53-2000: FS, 53-3800: FS
53-1900: FS, 53-2000: FS, 53-2200: FS, 53-3800: FS | | | 5.03.1 53-1700 Intercell bund (Cell 1/2) 5.03.1 53-1800 Site Formation | 75 13-Jan-19 28-Mar-19 432 11-1100: FS, 23-2500: FS
90 13-Jan-19 12-Apr-19 217 11-1100: FS, 23-2500: FS, 31-1300: FS | 53-2000: FS
53-1900: FS, 63-1100: FS, 63-1200: FS, 63-1300: FS, M 4. 1:
FS -45 | | | 5.03.1 53-1900 Pump Station (PS#1X) 5.03.1 53-2000 Lining Works | 45 13-Apr-19 27-May-19 507 53-1800: FS, 53-1600: FS 135 02-Nov-19* 15-Mar-20 214 41-1500: FS, 53-1400: FS, 53-1500: FS, 53-1600: FS 53-1700: FS | 53-2100: FS, 53-2200: FS
S, 53-2100: FS | | | 5.03.1 53-2100 Protective Stone Laying & Leachate Collection Pipe 5.03.1 53-2200 Install Leachate Force Main | 75 16-Mar-20 29-May-20 214 53-2000: FS, 41-1500: FS, 53-1900: FS 75 25-Jul-19 07-Oct-19 449 53-1500: FS, 53-1600: FS, 41-1500: FS, 53-1900: FS | 32-1500: FS, 54-2800: FS, M 4. 3: FS
5 54-2800: FS | | | 5.03.1 53-2300 Install Landfill Gas Pipe on earth bund 5.03.1 53-2400 Leachate Pipe Connection (Cell 1 to LTP) SA2 5 03 4 Landfill Cell 4 | 55 02-Nov-19 26-Dec-19 258 41-1500: FS, 53-1400: FS, 53-1500: FS 30 09-Mar-20 07-Apr-20 266 23-2500: FS, 54-1000: SS | 54-4000: FS
54-2800: FS | | | SA2.5.03.4 Landfill Cell 4 5.03.4 53-2500 Provide Temporary Leachate Pipe on Cell 4 Area SA2.5.03.5 Drainage - Surface Run-Off 5.03.5 53-2600 Construct Out-Off Channel 12A | 30 09-Jul-20 07-Aug-20 144 23-2500: FS, 63-2600: SS -90 740 16-Jan-19 24-Jan-21 839 60 16-Jan-19 16-Mar-19 9 11-1100: FS 23-2800: FS | 54-2800: FS, M 3. 3: FS | | | 5.03.5 53-2600 Construct Cut-Off Channel 12A 5.03.5 53-2700 Connect Cut-Off Channel 12A to DP6 5.03.5 53-2800 Diversion from Existing Trapezoidal Channel into Channel 12A | 60 16-Jan-19 16-Mar-19 9 11-1100: FS, 23-2800: FS
20 17-Mar-19 05-Apr-19 9 53-2600: FS, 31-1400: FS, 23-1900: FS
20 06-Apr-19 25-Apr-19 9 53-2700: FS | 53-2700: FS
53-2800: FS
53-1400: FS, 53-1500: FS, 53-2900: FS, 63-1000: FS, | | | 5.03.5 53-2900 Removal of Existing Trapezoidal Channel along Eastern Bund 5.03.5 53-3000 Cut-Off Channel C4 Diversion to Cut-Off Channel 17-2 | 30 26-Apr-19 25-May-19 9 53-2800: FS
45 16-Jan-19 01-Mar-19 83 11-1300: FS, 23-2800: FS | 63-1900: FS, M 3. 3: FS 53-4200: FS 53-1000: FS, 53-1200: FS | | | 5.03.5 53-3100 Cut-Off Channel X5 on Buttress Wall, Cell 4, Cell 3 5.03.5 53-3200 Temporary Diversion Cut-Off Channel X5 to 12A | 90 05-Apr-20 03-Jul-20 289 53-1000: FS, 53-1200: FS
20 04-Jul-20 23-Jul-20 289 53-3100: FS, 23-1900: FS | 53-3200: FS
53-3300: FS, M 3. 4: FS | | | 5.03.5 53-3300 Culvert X5 (5m long) & Perm Connection of Cut-Off Channel X5 5.03.5 53-3400 Construct Perimeter Channel X6 on Eastern Bund & Southern Bund of Cell 1 5.03.5 53-3500 Construct Perimeter Channel X6 on Eastern Bund of Cell 2 | 30 26-Dec-20 24-Jan-21 134 53-4100: FF, 63-1900: FS, 53-3200: FS 50 02-Nov-19 21-Dec-19 249 53-1400: FS, 53-1500: FS 50 20-Feb-20 09-Apr-20 189 63-1000: FS, 53-3400: FS | 32-1500: FS
53-3500: FS
53-3600: FS | | | 5.03.5 53-3600 Construct Perimeter Channel X6 Eastern Bund of Cell 3 5.03.5 53-3700 Culvert X6 (25m long) at Cell 1 Southern Bund | 50 09-Jun-20 28-Jul-20 129 63-1900: FS, 53-3500: FS
75 25-Jul-19 07-Oct-19 1314 53-1500: FS | 53-3900: FS | | | 5.03.5 53-3800 Perimeter Channel (X9B) at Cell 1 Southern & Western Bund 5.03.5 53-3900 Drop Inlet & Culvert (X9) - 21m long | 45 25-Jul-19 07-Sep-19 1344 53-1500: FS, 53-1600: FS 180 29-Jul-20 24-Jan-21 129 11-1100: FS, 23-1900: FS, 53-3600: FS | 53-4000: FF, 53-4100: FF, 53-6000: FS, M 9. 1: FS -90, M 9. 2: FS | | | 5.03.5 53-4000 Sediment Trap (ST) 5.03.5 53-4100 Dual Culvert 74m long (connect to DP4) | 180 29-Jul-20 24-Jan-21 129 11-1100: FS, 23-1900: FS, 11-1200: FS, 53-3900: FI 180 29-Jul-20 24-Jan-21 129 11-1100: FS, 11-1200: FS, 23-1900: FS, 53-3900: FI | | | | SA2.5.03.6 Drainage - Ground Water 5.03.6 53-4200 Construct Groundwater Collection Pipe along Cells X1 & X2 Eastern Bund | 200 26-May-19 11-Dec-19 209 70 26-May-19 03-Aug-19 9 11-1100: FS, 23-1600: FS, 53-2900: FS | 53-1400: FS, 53-4300: FS, 63-1000: FS, 63-1900: FS | | | 5.03.6 53-4300 Construct Groundwater Collection Pipe along Cell X3 Eastern Bund 5.03.6 53-4400 Construct Groundwater Collection Pipe along Intercell Bund X2/X3 5.03.6 53-4500 Construct Manhole MH-X1 | 50 04-Aug-19
22-Sep-19 159 53-4200: FS 50 23-Sep-19 11-Nov-19 209 53-4300: FS 30 12-Nov-19 11-Dec-19 209 53-4400: FS | 53-4400: FS, 63-1900: FS
53-4500: FS, 63-1200: FS
52-2300: FS, M 9. 5: FS | | | SA2.5.03.7 Utilities - Distribution within New Infrastructure Area 5.03.7 53-4600 Power Supply HV Works (Transformer & HV switchgear) | 391 11-Aug-19 04-Sep-20 276
5 30-Jun-20 04-Jul-20 0 54-3000: FS | 12-1200: FS | | | 5.03.7 53-4700 Power Distribution, LV Power Supply Works 5.03.7 53-4800 Sewerage (Collection to LTP) | 2 05-Jul-20 06-Jul-20 0 54-3100: FS, 12-1200: FS
60 07-Jul-20 04-Sep-20 271 54-1000: FS, 54-3100: FS, 54-3300: FS, 54-4100: FS | | | | 5.03.7 53-4900 Sewerage (Discharge to Site Boundary) 5.03.7 53-5000 Lighting Provision 5.03.7 53-5100 Fire Services | 60 07-Jul-20 04-Sep-20 271 54-1000: FS, 54-4100: FS, 54-4600: FS 30 07-Jul-20 05-Aug-20 6 54-1000: FS, 54-4100: FS, 54-4600: FS 115 12-Mar-20 04-Jul-20 2 53-6800: FS | 12-1100: FS, 53-6100: FS 12-1100: FS, 32-2100: FS 12-1000: FS | | | 5.03.7 53-5200 Water Supply (Fresh & Salt) 5.03.7 53-5300 Telecom & Network | 115 12-Mar-20 04-Jul-20 338 53-6600: FS, 53-6700: FS
45 11-Aug-19 24-Sep-19 622 53-6400: FS | 12-1100: FS
12-1100: FS | | | 5.03.7 53-5400 Gas Network (LFG to LTP) SA2.5.03.8 Utilities - Works Associated with Utilities Undertakers SA2.5.03.8.U1 CLP 5.03.9 Utilities - Works Associated with Utilities Undertakers | 15 22-Jun-20 06-Jul-20 176 54-1000: FF 703 27-Feb-19 29-Jan-21 129 459 27-Feb-19 30-May-20 43 | 54-2800: FS 54 1000: SS 54 4100: SS 54 4600: SS M10 | | | 5.03.8.U1 53-5500 Excavate Trench for CLP Cable 5.03.8.U1 53-5600 Backfill Trench after CLP Cable Laying | 100 13-May-19 20-Aug-19 194 23-2900: FS 30 01-May-20 30-May-20 43 53-5800: FS | 53-5800: FS, 54-1000: SS, 54-4100: SS, 54-4600: SS, M10.
1: FS -60, M10. 2: FS -30, M10. 3: FS
54-1000: FF, 54-4100: FF, 54-4600: FF | | | 5.03.8.U1 53-5600 Backfill Trench after CLP Cable Laying 5.03.8.U1 53-5700 CLP Cable Laying (from CLP Substation to Site Boundary) 5.03.8.U1 53-5800 CLP Cable Laying (from Site Boundary to HV Switchroom) | 30 01-May-20 30-May-20 43 53-5800: FS 200 27-Feb-19 14-Sep-19 229 32-2400: FS 60 02-Mar-20 30-Apr-20 0 53-5500: FS, 54-2900: FS, 32-2400: FS, 53-5900: FI | 54-3000: FS | | | 5.03.8.U1 53-5900 CLP HV associated equipment installation SA2.5.03.8.U2 DSD F 0.3 8 U2 F 3 6000 Correction to Storm Proin System | 120 18-Dec-19 15-Apr-20 0 54-2900: FS, 32-2400: FS 147 05-Sep-20 29-Jan-21 129 5 25 Jan 21 20 Jan 21 120 52 4100: FS 53 4000: FS 53 2000: FS | 53-5800: FF 15 | | | 5.03.8.U2 53-6000 Connection to Storm Drain System 5.03.8.U2 53-6100 Connection to Foul Drain System SA2.5.03.8.U3 Telecom | 5 25-Jan-21 29-Jan-21 129 53-4100: FS, 53-4000: FS, 53-3900: FS
5 05-Sep-20 09-Sep-20 271 53-4800: FS, 53-4900: FS
100 13-May-19 20-Aug-19 327 | 32-1500: FS
32-1500: FS | | | 5.03.8.U3 53-6200 Excavate Trench for PCCW | 60 13-May-19 11-Jul-19 307 23-2900: FS | 53-6400: FS, 54-1000: SS, 54-4100: SS, 54-4600: SS, M10.
1: FS -40, M10. 2: FS -20, M10. 3: FS | | | 5.03.8.U3 53-6300 Backfill Trench after PCCW Cable Laying 5.03.8.U3 53-6400 Laying Cables & Connection SA2.5.03.8.U4 WSD | 10 11-Aug-19 20-Aug-19 327 53-6400: FS 30 12-Jul-19 10-Aug-19 327 53-6200: FS 304 13-May-19 11-Mar-20 338 | 54-1000: FF, 54-4100: FF, 54-4600: FF
53-5300: FS, 53-6300: FS | | | 5.03.8.U4 53-6500 Install Watermain & Piping for Water Supplies 5.03.8.U4 53-6600 Connection for Fresh Water & Meter Installation | 60 13-May-19 11-Jul-19 216 23-2900: FS
30 11-Feb-20 11-Mar-20 338 53-6500: FS, 32-2300: FS | 53-6600: FS, 53-6700: FS, 53-6800: FS, 53-6900: FS 53-5200: FS | | | 5.03.8.U4 53-6700 Connection for Salt Water 5.03.8.U4 53-6800 Connection for Fire Services 5.03.8.U4 53-6900 Connection for Cooling Tower & Meter Installation | 30 11-Feb-20 11-Mar-20 338 53-6500: FS, 32-2300: FS
30 11-Feb-20 11-Mar-20 2 53-6500: FS, 32-2300: FS
30 11-Feb-20 11-Mar-20 117 53-6500: FS, 32-2300: FS | 53-5200: FS
53-5100: FS
54-2700: FS, 54-3900: FS | | | SA2.5.03.8.U5 HyD Lighting 5.03.8.U5 53-7000 Installation of Public Street Lighting / Handover | 120 07-Jul-20 03-Nov-20 216
120 07-Jul-20 03-Nov-20 216 54-4100: FS, 54-4600: FS, 54-1000: FS | 54-2700: FS, 54-3900: FS 32-1500: FS | | | SA2.5.04 Building Construction, incl. E&M and System Installation, and T&C SA2.5.04.A Part X1 Area A 5.04.A 54-1000 General Area & Access Road | 890 31-Dec-18 07-Jun-21 0 554 31-Dec-18 06-Jul-20 36 120 09-Mar-20 06-Jul-20 6 23-1300: FS, 53-5500: SS, 53-5600: FF, 53-6200: SS 53-6300: FF, 12-1000: FF, 11-1100: FS, 54-1100: FF | 3, 32-2100: FS, 53-2400: SS, 53-4800: FS, 53-4900: FS, 53-5000: FS, 53-5000: FS, 53-5400: FF, 53-7000: FS, 68-1700: FS | | | 5.04.A 54-1100 Carpark & Supporting Area | 54-1800: FF
60 31-Dec-18 28-Feb-19 64 23-1300: FS, 11-1100: FS | 32-1500: FS, M 5.11: FS -30, M 5.12: FS, 54-1000: FF, 54-1800: FS | | | 5.04.A 54-1200 Diesel Fuel Tanks 5.04.A 54-1300 EPD Building | 60 08-May-20 06-Jul-20 36 23-1300: FS, 23-5200: FS, 12-1000: FF, 11-1100: FS 270 30-Apr-19 24-Jan-20 44 23-1300: FS, 23-5200: FS, 11-1100: FS, 54-1700: SS | S 60 32-2100: FS, M 5. 4: FS -135, M 5. 5: FS, 12-1000: FS, | | | 5.04.A 54-1400 Fire Service Tank 5.04.A 54-1500 GVL Building | 270 29-Jun-19 24-Mar-20 44 23-1300: FS, 23-5200: FS, 11-1100: FS, 54-1300: SS 300 31-Dec-18 26-Oct-19 44 23-1300: FS, 23-5200: FS, 11-1100: FS | 54-1400: SS 60
32-2100: FS, M 5.10: FS, 12-1000: FS, 54-1600: SS 60
32-2100: FS, M 5. 1: SF 30, M 5. 2: SF 150, M 5. 3: FS, | | | 5.04.A 54-1600 Laboratory Building | 270 28-Aug-19 23-May-20 44 23-1300: FS, 23-5200: FS, 11-1100: FS, 54-1400: SS | 54-1700: SS 60
360 32-2100: FS, M 5. 6: FS -135, M 5. 7: FS, 12-1000: FS, 32-2200: FS | | | 5.04.A 54-1700 Maintenance Building & Area 5.04.A 54-1800 Storage Facility & Area | 270 01-Mar-19 25-Nov-19 44 23-1300: FS, 23-5200: FS, 11-1100: FS, 54-1500: SS 60 01-Mar-19 29-Apr-19 64 23-1300: FS, 11-1100: FS, 54-1100: FS | 54-1300: SS 60
32-1500: FS, M 5.11: FS -30, M 5.12: FS, 54-1000: FF, | | | 5.04.A 54-1900 Waste Oil Tanks 5.04.A 54-2000 Water Service House | 90 08-Apr-20 06-Jul-20 36 23-1300: FS, 23-5200: FS, 12-1000: FF, 11-1100: FS 60 30-Apr-19 28-Jun-19 64 23-1300: FS, 23-5200: FS, 11-1100: FS, 54-1800: FS | | | | SA2.5.04.B Part X1 Area B SA2.5.04.B.1 BioPlant Building | 890 31-Dec-18 07-Jun-21 0
330 17-Jan-19 12-Dec-19 243 | | | | 5.04.B.1 54-2100 LTP BioPlant Building SA2.5.04.B.2 Leachate Treatment Plant | 330 17-Jan-19 12-Dec-19 243 23-1300: FS, 23-5200: FS, 23-3200: FS, 11-1100: FS 31-1000: FS 589 31-Dec-18 10-Aug-20 21 | | | | 5.04.B.2 54-2200 Main Plant Area included Civil works 5.04.B.2 54-2300 MEP Installation | 274 31-Dec-18 30-Sep-19 0 23-1300: FS, 23-3200: FS, 11-1100: FS 220 01-Oct-19 07-May-20 0 41-2100: FS, 41-1800: FS, 22-2100: FS, 54-2200: FS | 54-2300: FS, 54-2400: FS, 54-2500: FS, 64-1100: FS, M 6. 1: SF 30, M 6. 4: FS -137, M 6. 5: FS 12-1000: FS 60, 32-1900: FS, 54-2600: FS, M 6. 8: FS -110, | | | 5.04.B.2 54-2300 MEP Installation 5.04.B.2 54-2400 SBR Tanks 5.04.B.2 54-2500 Ammonia Stripper | 220 01-Oct-19 07-May-20 0 41-2100: FS, 41-1800: FS, 22-2100: FS, 54-2200: FS
11-1100: FS
100 01-Oct-19 08-Jan-20 236 41-2400: FS, 54-2200: FS
315 01-Oct-19 10-Aug-20 21 41-3000: FS, 54-2200: FS | 5, 12-1000: FS 60, 32-1900: FS, 54-2600: FS, M 6. 8: FS -110, M 6. 9: FS, 32-2200: FS 54-2600: FS, M 6. 6: FS 54-2600: FS, M 6. 8: FS -150, M 6. 9: FS | | | SA2.5.04.B.3 S4-2500 Ammonia Stripper | 315 01-Oct-19 10-Aug-20 21 41-3000: FS, 54-2200: FS 301 11-Aug-20 07-Jun-21 0 45 11-Aug-20 24-Sep-20 21 54-2300: FS, 54-2400: FS, 54-2500: FS | 23-6600: FS -150, 23-6900: SS, 54-2700: FS, M11. 1: FS | | | 5.04.B.3 54-2700 Wet testing 5.04.B.3 54-2800 Operational testing | 75 25-Sep-20 08-Dec-20 21 54-2600: FS, 12-1200: FS, 53-6900: FS, 31-2200: FS 23-6800: FS 160 30-Dec-20 07-Jun-21 0 54-2700: FS, 53-2400: FS, 53-2500: FS, 53-2100: FS 160 | S, 32-1500: FS, M11. 3: FS, M11. 4: FS | | | SA2.5.04.C Part X1 Area C | 53-2200: FS, 63-1700: FS, 63-2600: FS, 53-5400: FS
54-4000: FS | | | | SA2.5.04.C.1 LFG - Power Supply Building 5.04.C.1 54-2900 LFG Building (with Transformer Room) 5.04.C.1 54-3000 Transformer & HV Swtichgear Installation | 530 17-Jan-19 29-Jun-20 5
335 17-Jan-19 17-Dec-19 0 23-1300: FS, 23-3500: FS, 11-1100: FS, 31-1000: FS
60 01-May-20 29-Jun-20 0 54-2900: FS, 41-1200: FS, 53-5800: FS, 53-5700: FS | FS S | | | 5.04.C.1 54-3100 MEP Installation, with T&C | 75 18-Dec-19 01-Mar-20 125 54-2900: FS | 32-1400: FS, M 7. 4: FS -30, M 7. 5: FS, M 7. 5: FF 32-1400: FS, 32-2100: FS, 53-4700: FS, 53-4800: FS, M 7. 4: FS -30, M 7. 5: FS | | | SA2.5.04.C.2 LFG Treatment Plant 5.04.C.2 54-3200 Main Plant Area included Civil Works | 554 31-Dec-18 06-Jul-20 0 384 31-Dec-18 18-Jan-20 0 23-3500: FS, 11-1100: FS | 54-3300: FS, 54-3400: FS, 54-3500: FS, 54-3600: FS, 54-3700: FS, 54-3800: FS, M 7. 1: SF 30, M 7. 2: FS -200, M 7. 3: FS | | | 5.04.C.2 54-3300 MEP Installation 5.04.C.2 54-3400 GHS600 Blower 601 A&B Relocation | 170 19-Jan-20 06-Jul-20 0 54-3200: FS, 12-1000: FF 15 19-Jan-20 02-Feb-20 155 23-5800: FS, 54-3200: FS | 32-2000: FS, 53-4800: FS, 54-3900: FS, M 7. 4: FS -80, M 7. 5: FS 54-3900: FS, M 7. 4: FS -8, M 7. 5: FS | | | 5.04.C.2 54-3500 Pre-treatment 5.04.C.2 54-3600 Flares (incl. PLC control, interlink to Towngas PF & LTP) 5.04.C.2 54-3700 LFG Engine (incl. on-grid protection, PLC control, turning) | 60 19-Jan-20 18-Mar-20 110 41-3900: FS, 54-3200: FS
125 19-Jan-20 22-May-20 45 41-3300: FS, 54-3200: FS
110 21-Feb-20 09-Jun-20 27 41-3600: FS, 54-3200: FS | 54-3900: FS, M 7. 4: FS -30, M 7. 5: FS
54-3900: FS, M 7. 4: FS -60, M 7. 5: FS
54-3900: FS, M 7. 4: FS -60 | | | 5.04.C.2 54-3700 LFG Engine (incl. on-grid protection, PLC control, turning) 5.04.C.2 54-3800 Cooling System SA2.5.04.C.3 LFG - Test & Commission | 110 21-Feb-20 09-Jun-20 27 41-3600: FS, 54-3200: FS 45 19-Jan-20 03-Mar-20 125 22-1500:
FS, 54-3200: FS 176 07-Jul-20 29-Dec-20 0 | 54-3900: FS, M 7. 4: FS -25, M 7. 5: FS | | | 5.04.C.3 54-3900 MEP Testing | 65 07-Jul-20 09-Sep-20 0 54-3400: FS, 54-3500: FS, 54-3600: FS, 54-3700: FS 54-3800: FS, 12-1200: FS, 53-6900: FS, 31-2200: FS 54-3300: FS | S, M11. 2: FS | | | 5.04.C.3 54-4000 Operational Testing SA2.5.04.D Part X1 Area D | 111 10-Sep-20 29-Dec-20 0 53-1300: FS, 63-2700: FS, 63-1800: FS, 53-2300: FS 53-1100: FS, 54-3900: FS, 23-7200: FS 374 29-Jun-19 06-Jul-20 6 | 63-4600: FS, M11. 3: FS, M11. 4: FS | | | 5.04.D 54-4100 General Area & Access Road | 120 09-Mar-20 06-Jul-20 6 23-1300: FS, 53-5500: SS, 53-5600: FF, 53-6200: SS 53-6300: FF, 12-1000: FF, 11-1100: FS | 53-7000: FS, M 8. 5: FS | | | 5.04.D 54-4200 VWF Building 5.04.D 54-4300 Weighbridge | 120 28-Oct-19 24-Feb-20 63 23-1300: FS, 23-5200: FS, 41-4500: FS, 11-1100: FS 54-4300: SS 60 75 29-Aug-19 11-Nov-19 63 41-4200: FS, 23-1300: FS, 23-5200: FS, 11-1100: FS 54-4400: SS 60 | FS, 54-4500: SS 60 | | | 5.04.D 54-4400 Weighmaster House 5.04.D 54-4500 Wheel Wash Bath | 120 29-Jun-19 26-Oct-19 64 23-1300: FS, 23-5200: FS, 11-1100: FS, 54-2000: FS 75 27-Dec-19 10-Mar-20 63 23-1300: FS, 23-5200: FS, 41-4500: FS, 11-1100: FS | | | | SA2.5.04.E Part X1 Area E & Part X2 5.04.E 54-4600 General Area & Access Road | 54-4200: SS 60 163 | | | | 5.04.E 54-4700 Guard House & Entrance Gate | 12-1000: FF, 11-1100: FS, 11-1200: FS 100 | S, 32-2100: FS, M 8. 2: FS, 12-1000: FS | | | SA2.5.08 Landscape Works - Advance Screen Planting in CWB Country Park SA2.5.08.N Area N 5.08.N 58-1000 Advance Screen Planting | 270 01-Apr-19 26-Dec-19 529 270 01-Apr-19 26-Dec-19 529 90 01-Apr-19* 29-Jun-19 529 23-7900: FS, 31-1100: FS, 11-1500: FS | 14-1800: SS -60, 58-1100: SS, 68-1600: SS 30, M 3. 2: FS | | | 5.08.N 58-1100 Establishment of Screen Planting SA2.5.08.S Area S | 270 01-Apr-19 26-Dec-19 529 58-1000: SS, 14-1800: FS 270 01-Apr-19 26-Dec-19 529 | 32-1500: FS | | | 5.08.S 58-1200 Advance Screen Planting 5.08.S 58-1300 Establishment of Screen Planting | 90 01-Apr-19* 29-Jun-19 529 23-7900: FS, 31-1100: FS, 11-1500: FS
270 01-Apr-19* 26-Dec-19 529 58-1200: SS | 58-1300: SS, M 3. 2: FS
32-1500: FS | | | SA2.6 Construction (Remaining Works) SA2.6.02 Advance Works SA2.6.02.9 Demolition of SENT Infrastructure Area 6.02.9 62-1000 Existing SENT General Infrastructure Eacility & Building | 1474 01-Apr-19 13-Apr-23 30
80 09-Jul-21 26-Sep-21 339
80 09-Jul-21 26-Sep-21 339
60 09-Jul-21 06-Sep-21 239 32-2100: FS, 12-1300: FS | 23-2000: SS -90 63-2800: FS 63-2000: FS 63-3000: FS | | | 6.02.9 62-1000 Existing SENT General Infrastructure Facility & Building 6.02.9 62-1100 Existing SENT LTP | 60 09-Jul-21 06-Sep-21 239 32-2100: FS, 12-1300: FS
60 29-Jul-21 26-Sep-21 339 32-1500: FS, 12-1300: FS, 23-2200: FS | 23-2000: SS -90, 63-2800: FS, 63-2900: FS, 63-3000: FS, 63-3000: FS, 63-4300: FS, M12. 4: FS -30, M12. 5: FS 63-3000: FS, 63-4500: FS, M12. 4: FS -30, M12. 5: FS | | | | 60 29-Jul-21 26-Sep-21 339 32-1500: FS, 12-1300: FS, 23-2200: FS | 63-3000: FS, 63-4500: FS, M12. 4: FS -30, M12. 5: FS | | | 6.02.9 62-1200 Existing SENT LFG | | | | | 6.02.9 62-1200 Existing SENT LFG Remaining Work Critical Remaining Work | Page: 3 of 4 | South-East New Territories Land Fill Extension (SA2-SENTX) Baseline Programme | Date Revision Checked 11-May-18 SENTX-GVL-W-PB-ZZ-0001 Rev. I01 | | 4 | VDC Det | | A - 1" | h. h-0.10 | (h/ Nama | | | nd | h T-1-1 | Dradones or Potaile | Suggest Patails | |------------|----------------|-----------------|------------------------|--|--|-----|----------|------------------------------|---------|--|---| | # V | VBS Path | | ID | ty Activity | | Dur | | | Float | Predecessor Details | Successor Details | | 509
510 | | | | <mark>gineering</mark>
II Cell 2 | g works | 449 | 02-Nov- | 19 13-Apr-2
19 23-Jan-2 | 1 810 | | | | 511 | 6.03.2 | 3.2 | 63-10 | 00 Earth b | bund (Eastern) | | | | | 11-1100: FS, 23-2500: FS, 53-4200: FS, 53-1400: FS, 53-2800: FS | 53-3500: FS, 63-1500: FS, 63-1800: FS, 63-1900: FS, 63-2000: FS, 63-2100: FS, 63-2200: FS, M12. 1: FS -50, M12. | | | | | | | | | | | | | 2: FS, 63-1100: FS | | 512 | 6.03.2 | 3.2 | 63-11 | 00 Earth b | bund (Western) | 110 | 20-Feb- | 20 08-Jun-20 | 20 84 | 11-1100: FS, 23-2500: FS, 53-1800: FS, 53-1400: FS, 63-1000: FS | 63-1400: FS, 63-1500: FS, 63-1700: FS, 63-3500: FS, 63-3600: FS, 63-1200: FS | | 513 | 6.03.2 | 3.2 | 63-12 | 00 Interce | ell bund (Cell 2/3) | 90 | 09-Jun- | 20 06-Sep-2 | 20 734 | 11-1100: FS, 23-2500: FS, 53-1800: FS, 53-1400: FS, | 63-1500: FS | | 514 | 6.03.2 | 3.2 | 63-13 | 00 Site Fo | omation | 75 | 02-Nov- | 19 15-Jan-20 | 20 14 | 53-4400: FS, 63-1100: FS
11-1100: FS, 23-2500: FS, 53-1800: FS, 53-1400: FS | 63-1400: FS, 63-4200: FS | | 545 | | | | | | | | | | | · | | 515 | <u> </u> | | | 00 Pump | o Station (PS#2X) | | | | | , | 63-1600: FS, 63-1700: FS
63-1600: FS, M12. 3: FS, 63-2400: FS | | | | | | | | | | | | , , , | , | | 517 | <u> </u> | | | | ctive Stone Laying & Leachate Collection Pipe I Leachate Force Main | | | | | 63-1500: FS, 41-1500: FS, 63-1400: FS
63-1100: FS, 41-1500: FS, 63-1400: FS | 32-1600: FS, M12. 3: FS
54-2800: FS, M12. 3: FS | | 519 | | | | | I Landfill Gas Pipe on earth bund | | | | | 41-1500: FS, 63-1000: FS | 54-4000: FS, M12. 3: FS | | 520 | | | | II Cell 3 | | | | 20 02-Feb-2 | | | | | 521 | 6.03.3 | 3.3 | 63-19 | 00 Earth b | bund (Eastern) | 110 | 20-Feb- | 20 08-Jun-20 | 9 | 11-1100: FS, 53-4200: FS, 63-1000: FS, 53-4300: FS, 53-2800: FS, 63-4200: FS | 53-3300: FS, 53-3600: FS, 63-2400: FS, 63-2700: FS, M12. 1: FS -50, M12. 2: FS, 63-2000: FS -45, 63-2200: FS | | 522 | 0.00 | | C2 20 | 00 5-4-1 | hund (Mastern) | 110 | 0F A == | 20 42 4 | 10 | 44 4400, FC C2 4000, FC C2 4000, FC 4F | 22 2200 FC C2 2400 FC C2 2000 FC C2 2700 FC | | | 6.03.3 | 3.3 | 63-20 | 00 Earth b | bund (Western) | 110 | 25-Apr- | 20 12-Aug-20 | 20 19 | 11-1100: FS, 63-1000: FS, 63-1900: FS -45 | 63-2300: FS, 63-2400: FS, 63-2600: FS, 63-3700: FS, 63-2100: FS -45 | | 523 | 6.03.3 | 3.3 | 63-21 | 00 Interce | rell bund (Cell 3/4) | 105 | 29-Jun- | 20 11-Oct-2 | 789 | 11-1100: FS, 63-1000: FS, 63-4200: FS, 63-2000: FS -45 | 63-2400: FS | | 524 | 6.03.3 | 3.3 | 63-22 | 00 Site Fo | ormation | 75 | 09-Jun- | 20 22-Aug-20 | 0 9 | 11-1100: FS, 63-1000: FS, 63-1900: FS | 63-2300: FS | | 525 | 6.03.3 | 3.3 | 63-23 | 00 Pump | Station (PS#3X) | 45 | 23-Aug- | 20 06-Oct-2 | 20 9 | 63-2200: FS, 63-2000: FS | 63-2500: FS, 63-2600: FS | | 526 | 6.03.3 | 3.3 | 63-24 | 00 Lining | y Works | 100 | 01-Oct-2 | 21* 08-Jan-2 | 2 435 | 41-1500: FS, 63-1900: FS, 63-2000: FS, 63-2100: FS, 63-1500: FS | 63-2500: FS, M12. 3: FS | | 527 | 6.03.3 | 3.3 | 63-25 | 00 Protect | ctive Stone Laying & Leachate Collection Pipe | 25 | 09-Jan- | 22 02-Feb-2 | 2 435 | 63-2400: FS, 41-1500: FS, 63-2300: FS | 32-1700: FS, M12. 3: FS | | 528 | | | | | I Leachate Force Main | | | | | 63-2000: FS, 41-1500: FS, 63-2300: FS | 53-2500: SS -90, 54-2800: FS, M12. 3: FS | | 529 | <u> </u> | | | | Landfill Gas Pipe on earth bund | | | | | 41-1500: FS, 63-1900: FS | 54-4000: FS, M12. 3: FS | | 530 | | | | II Cell 4
00 Remai | aining Portion of Buttress Wall | | | 21 13-Apr-23
21 04-Jan-23 | | 62-1000: FS | | | 532 | | | | | bund (Western) incl. MSE Wall | | | | | 62-1000: FS | 63-3000: FS, 63-3100: FS, 63-3200: FS, 63-3400: FS, | | | | | | | | | | | | | 63-3800: FS, 63-3900: FS, 63-4100: SS -90, M 9. 6: FS -60, M 9. 7: FS -30, M 9. 8: FS | | 522 | 6.00 | 2 / | 62.00 | 00 Site Fo | Compation | 400 | OE 1 | 22 04 14 2 | 2 220 | 62-1000: FS, 62-1100: FS, 62-1200: FS, 63-2900: FS, | 63-3100: FS | | 333 | | | | | | | | | | 63-4100: FS | | | 534 | <mark> </mark> | | | | o Station (PS#4X) | | | | | 63-3000: FS, 63-2900: FS | 63-3300: FS, 63-3400: FS | | 535 | | | | 00 Lining | g Works ctive Stone Laying & Leachate Collection Pipe | | | | | 41-1500: FS, 63-2900: FS
41-1500: FS, 63-3200: FS, 63-3100: FS | 63-3300: FS, M12. 6: FS
12-1900: FS, 32-1800: FS, M12. 6: FS | | 537 | | | | | Leachate Force Main & Remove Temporary Leachate Pipe | | | - | | 41-1500: FS, 63-2900: FS, 63-3100: FS
41-1500: FS, 63-2900: FS, 63-3100: FS | 12-1900: FS, 32-1800: FS, M12. 6: FS | | 538 | | | | | ace Run-Off | | | 20 03-Feb-2 | | 41-1000.10,00-2000.10,00-0100.10 | 12-1500.1 0, 02-1000.1 0, 1112. 0.1 0 | | 539 | 6.03. | 3.5 | 63-35 | 00 Perime | neter Channel (X9A) at Cell 2 Western Bund | 15 | 09-Jun- | 20 23-Jun-20 | 1054 | 63-1100: FS | 12-1900: FS | | 540 | | | | | neter Channel (X10A) at Cell 2 Western Bund | | | | | 63-1100: FS | 63-4000: FS | | 541 | | | | | neter Channel (X10A) at Cell 3 Western Bund | | | · · | | 63-2000: FS | 63-4000: FS | | 542 | | | | | neter Channel (X10A) at Cell 4 Western Bund neter Channel (X10C) at Cell 4 Western Bund | | | | | 63-2900: FS
63-2900: FS | 63-4000: FS
63-4000: FS | | 544 | | | | | ection to Existing DP3 | | | | | 63-3900: FS, 63-3600: FS, 63-3700: FS, 63-3800: FS | 12-1900: FS | | | | | | | <u> </u> | | | | | | | | 545 | | | | | ove Cut-Off Channel C-7 at bottom of Buttress Wall orary Channel (X7T) at SENT Infrastructure Area | | | | | 63-2900: SS -90
63-1300: FS | 63-3000: FS
63-1900: FS, 63-2100: FS | | 547 | | | | | and Water | | | 21 30-Nov-2 | | | 03-1300. F3, 03-2100. F3 | | 548 | 6.03.6 | 3.6 | 63-43 | 00 Constr | truct Temporary Channel (TC-1), from MH-1 to Existing UC-825 | 50 | 07-Sep- | 21 26-Oct-2 | 21 529 | 23-1900: FS, 11-1300: FS, 62-1000: FS | 63-4400: FS | | 549 | | | | | t GW at MH-1 to TC-1 | | | | | 63-4300: FS | 63-4500: FS, M 9. 9: FS | | 550 | | | | | nnection of
GWCP across Cell 4 Associated with Utilities Undertakers | | | 21 30-Nov-2
20 27-Jul-2 | | 62-1100: FS, 62-1200: FS, 63-4400: FS | 12-1900: FS | | 552 | SA2.0 | 2.6.03.8. | U1 CI | .Р | | 210 | 30-Dec- | 20 27-Jul-2 | 21 655 | | | | 553 | | | | | Generator On-grid Testing | | | | | 32-2500: FS, 12-1200: FS, 54-4000: FS | 63-4700: FS | | 555 | | | | 00 ∣LFG G
<mark>wnGas</mark> | Generator On-grid Inspection & Verify | | | 21 27-Jul-2
20 08-Jan-2 | | 63-4600: FS | 12-1900: FS | | 556 | 6.03 | 3.8.U6 | 63-48 | 00 Laying | g Gas Mains (from LFG to Town Gas PF) | | | | | 54-4000: FF | 63-4900: FS | | 557 | | | | | Meter Relocation & Connection at LFG | | | | | 63-4800: FS, 54-4000: FS | 12-1900: FS | | 558 | | | | <mark>g & E&M V</mark>
1 Area C | | | | 19 22-Jul-2
19 22-Jul-2 | | | | | 560 | SA2.0 | 2.6.04.C | 02 LF | G Treatme | ent Plant | 661 | 01-Oct- | 19 22-Jul-2 | 21 660 | | | | 561 | <u> </u> | | | | 500 Blower 601 C Relocation | | | | | | 12-1900: FS | | 562 | | | | 00 Absorp
ape Work | rption Chiller (Optional) | | | 19 29-Dec-19
19 03-Dec-20 | | | 12-1900: FS | | 564 | | | | | ks
e Removal & Transplanting | | | 19 03-Dec-20
19 26-Nov-19 | | | | | 565 | | | | | ss trees condition and select for transplanting | 30 | 01-Apr-1 | 9* 30-Apr-19 | 9 1264 | 14-1300: FS | 68-1100: FS, 68-1200: FS, 68-1400: FS | | 566 | | | | | are new site to receive trees | | - | | | 68-1000: FS | 68-1200: SS | | 568 | | | | | plant selected trees e trees prior to removal from Cell 4 | | - | | | 68-1000: FS, 68-1100: SS
68-1200: FS | 68-1300: FS
12-1900: FS | | 560 | | | | | Felling - Part X3 | | | | | | 12-1900: FS
12-1900: FS | | 303 | 5.50. | , | 68-14 | 00 1100 . | ial Nursery & Tree Planting | | • | | | | | | 570 | | 6.08.2 | SENT | Area - Tria | | | | 19 03-Dec-20 | | | | | 570
571 | 6.08.2 | 6.08.2 3 | SENT)
68-16 | Area - Tria | | 300 | 01-May- | 19 24-Feb-20 | 1174 | · · · · · · · · · · · · · · · · · · · | 12-1900: FS, M 3. 2: FS
12-1900: FS | # Annex B # Environmental Mitigation Implementation Schedule # Annex B Environmental Mitigation Implementation Schedule | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | When to implement
the measure? (1)
D C O/R A | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |-----------|-------------|--|--|-----------------------------|-------------------------------|--|--|--| | Air Quali | ity - Cons | truction Phase | | | | | | | | 4.8.1 | AQ1 | Blasting | To minimise | Blasting area | SENTX | ✓ | Air Pollution Control | Not applicable. | | | | • The area within 30m of the blasting area will be wetted prior to blasting. | potential dust
nuisance | and 30m of
blasting area | Contractor | | (Construction Dust)
Regulations | Blasting is not required in the latest landfill design | | | | Blasting will not be carried out when the
strong wind signal or tropical cyclone
warning signal No. 3 or higher is hoisted,
unless this is with the express prior
permission of the Commissioner of Mines. | | | | | | | | | | loose material and stones in the Site will
be removed prior to the blast operation | | | | | | | | | | During blasting, blast nets, screens and
other protective covers will be used to
prevent the projection of flying fragments
and material resulting from blasting | | | | | | | | 4.8.1 | AQ2 | Rock Drilling | To minimise | Rock drilling | SENTX | ✓ | Air Pollution Control | Not applicable. Rock | | | | Watering will be carried out at the rock
drilling activities to avoid fugitive dust
emissions. | potential dust
nuisance | area | Contractor | | (Construction Dust)
Regulations | drilling is not required
in the latest landfill
design | | 4.8.1 | AQ3 | Site Access Road | To minimise | Main haul | SENTX | ✓ | Air Pollution Control | Implemented | ⁽¹⁾ D=Design; C=Construction; O/R=Operation/Restoration; A=Aftercare | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the Recommended | Location of the Measures | Who to implement | the me | asure? | | or standards for the | Implementation
Status and Remarks | | |----------|-------------|--|--|-----------------------------|---------------------|--------|------------------|------|---|--------------------------------------|--| | | | | Measure & Main
Concerns to
address | | the measure? | D C | : O ₁ | 'R A | measure to achieve? | | | | | | The main haul road will be kept clear of
dusty materials or sprayed with water. | potential dust
nuisance | road | Contractor | | | | (Construction Dust)
Regulations | | | | | | • The main haul road will be paved with aggregate or gravel. | | | | | | | HKAQO and EIAO-
TM Annex 4 | | | | | | • Vehicle speed will be limited to 10kph. | | | | | | | | | | | 4.8.1 | AQ4 | Stockpiling of Dusty Materials | To minimise | All | SENTX | ✓ | • | | Air Pollution Control | Reminder was given to | | | | | Any stockpile of dusty materials will be
covered entirely by impervious sheeting | potential dust
nuisance | construction
works area | Contractor | | | | (Construction Dust)
Regulations | the contractor | | | | | or placed in an area sheltered on the top
and three sides or sprayed with water so
as to ensure that the entire surface is wet. | | | | | | | HKAQO and EIAO-
TM Annex 4 | | | | 4.8.1 | AQ5 | <u>Loading, unloading or transfer of dusty</u>
<u>materials</u> | To minimise potential dust nuisance | All construction works area | SENTX
Contractor | ✓ | • | | Air Pollution Control
(Construction Dust)
Regulations | Implemented | | | | | All dusty materials will be sprayed with
water immediately prior to any loading,
unloading or transfer operation so as to
maintain the dusty material wet. | nuisance | works area | | | | | HKAQO and EIAO-
TM Annex 4 | | | | 4.8.1 | AQ6 | Site Boundary and Entrance | To minimise | Site boundary | SENTX | ✓ | , | | Air Pollution Control | Not applicable | | | | | Where a site boundary adjoins a road,
street, service lane or other area accessible | potential dust
nuisance | and entrance | Contractor | | | | (Construction Dust)
Regulations | | | | | | to the public, hoarding of height not less
than 2.4m from ground level will be
provided along the entire length of that
portion of the site boundary except for the
site entrance or exit. | | | | | | | HKAQO and EIAO-
TM Annex 4 | | | | 4.8.1 | AQ7 | Excavation Works | To minimise | All | SENTX | ✓ | • | | Air Pollution Control | Implemented | | | EIA Ref. | | Environmental Protection Measures/ | Objectives of the Recommended | | Who to | | implem | ent | What requirements or standards for the | Implementation | |----------|------|--|--|---|---------------------------|-----------|----------------------------|-----|---|--| | | Ref | Mitigation Measures | Measure & Main
Concerns to
address | the Measures | implement
the measure? | neas
C | ure? ⁽¹⁾
O/R | A | measure to achieve? | Status and Remarks | | | | Working area of any excavation or earth
moving operation will be sprayed with
water immediately before, during and
immediately after the operation so as to
ensure that the entire surface is wet. | potential dust
nuisance | construction
works area | Contractor | | | | (Construction Dust) Regulations HKAQO and EIAO- TM Annex 4 | | | 4.8.1 | AQ8 | Building Demolition The area where the demolition works are planned to take place will be sprayed with water immediately prior to, during and immediately after the demolition activities. | To minimise potential dust nuisance | All
construction
works area | SENTX
Contractor | ✓ | | | Air Pollution Control
(Construction Dust)
Regulations
HKAQO and EIAO-
TM Annex 4 | Implemented | | | | Any dusty materials remaining after a
stockpile is removed will be wetted with
water and cleared from the surface of
roads or street. | | | | | | | | | | 4.8.1 | AQ9 | Construction of the Superstructure of Building Effective dust screens, sheeting or netting will be provided to enclose the scaffolding from the ground level up to the highest level of the scaffolding. | To minimise potential dust nuisance | All construction works area |
SENTX
Contractor | ✓ | | | Air Pollution Control
(Construction Dust)
Regulations
HKAQO and EIAO-
TM Annex 4 | Implemented | | 4.8.1 | AQ10 | Should a stone crushing plant be needed on site, the control measures recommended in the Best Practicable Means Requirement for Mineral Works (Stone Crushing Plants) BPM 11/1 should be implemented. | To minimise potential dust nuisance | Stone crushing plant/construction phase | SENTX
Contractor | ✓ | | | Best Practicable Means
Requirement for
Mineral Works (Stone
Crushing Plants) BPM
11/1 | Not applicable. Stone crushing plant is not required in the latest landfill design | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | the n | | implement
ure? ⁽¹⁾
O/R A | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |-----------|------------------|---|--|---|-------------------------------|-------|----------|---|--|---| | 4.8.1 | AQ11 | Good site practices such as regular maintenance and checking of the diesel powered mechanical equipment will be adopted to avoid any black smoke emissions and to minimize gaseous emissions. | To minimise potential dust nuisance | All
construction
works area | SENTX
Contractor | | ✓ | | HKAQO and EIAO-
TM Annex 4 | Implemented | | 4.10.1 | AQ12 | Dust monitoring once every 6 days | Ensure the dust
generated from
the project meets
the air quality
requirement | At monitoring locations shown in <i>Figure 3.2a</i> | SENTX
Contractor | | √ | | HKAQO and EIAO-
TM Annex 4 | Implemented | | Air Quali | ty - Oper | ation, Restoration and Aftercare Phases | | | | | | | | | | 4.8.2 | AQ13 | Odour • Enclosing the weighbridge area | To minimise odour nuisance | Weighbridge
area | SENTX
Contractor | ✓ | | ✓ | EIAO-TM Annex 4 | Not Applicable. As
SENTX will receive
construction waste
only which is
significantly less
odorous, enclosing the
weighbridge area is
not necessary | | 4.8.2 | AQ14 | Providing a vehicle washing facility before
the exit of SENTX and providing sufficient
signage to remind RCV drivers to pass
through the facility before leaving SENTX | | Vehicle
washing
facility | SENTX
Contractor | ✓ | | √ | EIAO-TM Annex 4 | Implemented | | 4.8.2 | AQ15 | Reminding the RCV drivers to empty the liquor collection sump and close the valve | To minimise odour nuisance | Tipping face | SENTX
Contractor | | | √ | EIAO-TM Annex 4 | Not Applicable. As
SENTX will receive
construction waste | | EIA Ref. | EM&A
Ref | Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | When to
the meas
D C | - | | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |----------|-------------|--|--|-----------------------------|-------------------------------|----------------------------|----------|---|--|---| | | | before leaving the tipping face | | | | | | | | only, which is
relatively dry, the
amount of liquor
generated is expected
to minimal | | 4.8.2 | AQ16 | 8 | To minimise odour nuisance | SENTX Site | SENTX
Contractor | | \ | | EIAO-TM Annex 4 | Not Applicable. As
SENTX will receive
construction waste
only, which is
relatively dry, the
amount of liquor
generated is expected
to minimal. | | 4.8.2 | AQ17 | Reminding operators to properly maintain
their RCVs and ensure that liquor does not
leak from the vehicles | | SENTX Site | SENTX
Contractor | | ✓ | | EIAO-TM Annex 4 | Not Applicable. As
SENTX will receive
construction waste
only, which is
relatively dry, the
amount of liquor
generated is expected
to minimal. | | 4.8.2 | AQ18 | 8 | To minimise odour nuisance | SENTX Site | SENTX
Contractor | ✓ | ✓ | ✓ | EIAO-TM Annex 4 | Implemented | | 4.8.2 | AQ19 | Progressive restoration of the areas which | To minimise | SENTX Site | SENTX | ✓ | ✓ | ✓ | EIAO-TM Annex 4 | Implemented | ENVIRONMENTAL RESOURCES MANAGEMENT GREEN VALLEY LANDFILL LTD. | EIA Ref. | | A Environmental Protection Measures/
Mitigation Measures | | Objectives of the | Location of the Measures | Who to | | | o imp | | - | Implementation
Status and Remarks | |---------------------------------------|------|---|---|----------------------------|---------------------------|---------------------|-------|--------------|-------|--|-----------------|---| | | Ref | | Recommended
Measure & Main
Concerns to
address | the Measures | implement
the measure? | | e mea | asure?
O/ | R A | or standards for the measure to achieve? | | | | | | | reach the finished profile (a final capping
system including an impermeable liner
will be put in place) and installation of a
permanent landfill gas extraction system | odour nuisance | | Contractor | | | | | | | | 4.8.2 | AQ20 | • | Installing deodorizers along the site boundary adjacent to the ASRs | To minimise odour nuisance | SENTX Site
boundary | SENTX
Contractor | | | ✓ | ✓ | EIAO-TM Annex 4 | Not Applicable. As
SENTX will receive
construction waste
only which is
significantly less
odorous, installation of
deodorizers is not
necessary. | | 4.8.2 | AQ21 | • | Erecting a vertical barrier, wall or structure softened by planting rows of trees/shrubs or landscape feature along the site boundary, particularly in the areas near the ASRs | To minimise odour nuisance | SENTX Site
boundary | SENTX
Contractor | ✓ | | ✓ | ✓ | EIAO-TM Annex 4 | Implemented | | 4.8.2 and
SENTX
atest
design | AQ22 | • | Maintaining the size of the active tipping face not greater than 1,200 m^2 | To minimise odour nuisance | Active tipping face | SENTX
Contractor | | | ✓ | | EIAO-TM Annex 4 | Implemented | | 4.8.2 | AQ23 | • | Promptly covering the MSW with soil or selected inert materials to control odour emissions | To minimise odour nuisance | Active tipping face | SENTX
Contractor | | | ✓ | | EIAO-TM Annex 4 | Not Applicable.
SENTX will not recei
MSW. | | 4.8.2 | AQ24 | • | Maintaining the size of the special waste trench not greater than $6m (l) \times 2.5m (w)$ | To minimise odour nuisance | Special waste trench | SENTX
Contractor | | | ✓ | | EIAO-TM Annex 4 | Not Applicable.
SENTX will not have | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | When to imp
the measure
D C O | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |--|-------------|---|--|---|-------------------------------|-------------------------------------|--|---| | | | | | | | | | any special waste trench. | | 4.8.2 and
SENTX
latest
design | AQ25 | Covering daily covered area with a
tarpaulin sheet or 300mm of soil after the
landfill operating hours | To minimise odour nuisance | Daily covered area | SENTX
Contractor | ✓ | EIAO-TM Annex 4 | Implemented | | 4.8.2 | AQ26 | • Covering special waste trench with 600 mm of soil and an impervious liner after 5 pm | To minimise odour nuisance | Special waste trench | SENTX
Contractor | ✓ | EIAO-TM Annex 4 | Not Applicable.
SENTX will not have
any special waste
trench. | | 4.8.2 | AQ27 | • Covering the non-active tipping face with 600mm of soil and an impermeable liner (on top of the intermediate cover), which will not only control
odour emissions from landfilled waste but also enhance landfill gas extraction by the landfill gas extraction system | To minimise odour nuisance | Intermediate
cover | SENTX
Contractor | ✓ | EIAO-TM Annex 4 | Implemented | | 4.8.2 | AQ28 | Applying deodorizers or odour
suppression agents to control odour
emissions from the active tipping face and
special waste trench, if any, through
spraying or fogging equipment | To minimise odour nuisance | Active tipping
face and
special waste
trench | SENTX
Contractor | ✓ | EIAO-TM Annex 4 | Not Applicable. As
SENTX will receive
construction waste
only which is
significantly less
odorous, installation of
deodorizers is not
necessary. Moreover,
SENTX will not have
any special waste | | EIA Ref. | EM&A
Ref | A Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement | When to | - | | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |--|-------------|--|--|--------------------------------|---------------------|---------|----------|----------|--|---| | | | | | | the measure? | D C | O/R | A | | | | | | | | | | | | | | trench. | | 4.8.2 | AQ29 | Providing a mobile cover with retractable
or suitable opening to cover up the
opening of the special waste trench except
during waste deposition and a suitable
odour removal unit. The mobile cover
should be equipped with powered
extraction and suitable odour removal unit
for purifying the trapped gas inside the
trench before release into the atmosphere | To minimise odour nuisance | Special waste trench | SENTX
Contractor | | • | | EIAO-TM Annex 4 | Not Applicable.
SENTX will not have
any special waste
trench. | | 4.8.2 and
SENTX
latest
design | AQ30 | Providing a thermal oxidizer for the leachate treatment plant | To minimise odour nuisance as a result of breakdown of thermal oxidizer | Leachate
treatment
plant | SENTX
Contractor | ✓ | ✓ | √ | EIAO-TM Annex 4 | Implemented | | 4.8.2 and
SENTX
latest
design | AQ31 | • Enclosing all the leachate storage and treatment tanks (except for the Sequential Batch Reactor (SBR) or Membrane Bioreactor (MBR) tanks) and diverting the exhaust air from these tanks to a thermal oxidizer or flare to avoid potential odour emissions from the LTP | To minimise odour nuisance | Leachate
treatment
plant | SENTX
Contractor | ✓ | ✓ | ✓ | EIAO-TM Annex 4 | Implemented | | 4.8.2 | AQ32 | • Rescheduling of waste filling activities on-
site by avoiding waste filling activities
carrying out at the northern area of the site
in the summer months between July to
November | To minimise odour nuisance | SENTX Site | SENTX
Contractor | | √ | | EIAO-TM Annex 4 | Not Applicable. As
SENTX will receive
construction waste
only which is
significantly less | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | When to
the mea
D C | - | | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |--|-------------|---|--|-----------------------------|-------------------------------|---------------------------|---|---|--|--| | | | | | | | | | | | odorous, rescheduling
of waste filling
activities is not
necessary. | | 4.8.2 and
SENTX
latest
design | AQ33 | Dust, Gaseous Emission and LFG including Volatile Organic Compounds (VOCs) • Keeping the main haul road to the waste | To minimise dust nuisance | SENTX Site | SENTX
Contractor | | ✓ | | HKAQO and EIAO-
TM Annex 4 | Implemented | | uesigii | | filling area wet by regular watering; | | | | | | | | | | 4.8.2 | AQ34 | Compacting the exposed daily and
intermediate covered areas well to avoid
fugitive dust emission; | To minimise dust nuisance | SENTX Site | SENTX
Contractor | | ✓ | | HKAQO and EIAO-
TM Annex 4 | Implemented | | 4.8.2 | AQ35 | • Limiting the vehicle speed within SENTX site boundary; | To minimise dust nuisance | SENTX Site | SENTX
Contractor | | ✓ | | HKAQO and EIAO-
TM Annex 4 | Implemented | | 4.8.2 | AQ36 | Providing vehicle washing bay to avoid
vehicles carrying dust to public roads; | To minimise dust nuisance | SENTX Site | SENTX
Contractor | | ✓ | | HKAQO and EIAO-
TM Annex 4 | Implemented | | 4.8.2 | AQ37 | • Switching off the engine when the dieseldriven equipment is idling; | To minimise gaseous emissions | SENTX Site | SENTX
Contractor | | ✓ | ✓ | - | Implemented | | 4.8.2 | AQ38 | Maintaining the construction equipment
properly to avoid any black smoke
emissions; | To minimise gaseous emissions | SENTX Site | SENTX
Contractor | | ✓ | ✓ | - | Implemented | | 4.8.2 | AQ39 | Providing sufficient underground landfill gas collection system to capture the landfill gas | To minimise gaseous | SENTX Site | SENTX
Contractor | | ✓ | ✓ | EIAO-TM Annex 4 | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/ Mitigation Measures generated as much as possible; and | Objectives of the
Recommended
Measure & Main
Concerns to
address
emissions,
including LFG
and VOCs | Location of
the Measures | Who to implement the measure? | the | | impler
sure? ⁽¹⁾
O/R | | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |----------------------------------|-------------|---|---|--|-------------------------------|-----|---|---------------------------------------|--------------|--|--------------------------------------| | 4.8.2 | AQ40 | Periodic inspections of the final cover should
be undertaken to ensure that the capping
layer is in good conditions at all times. | To minimise gaseous emissions, including LFG and VOCs | SENTX Site | SENTX
Contractor | | | √ | ✓ | EIAO-TM Annex 4 | Implemented | | 4.10.2 | AQ41 | Monitoring of ambient TSP once every 6 days | Ensure the dust
emission from the
project meets the
dust requirement | shown in | SENTX
Contractor | | ✓ | ✓ | | HKAQO and EIAO-
TM Annex 4 | Implemented | | 4.10.2 | AQ42 | Monitoring of ambient VOCs, ammonia and $\mathrm{H}_2\mathrm{S}$, quarterly | Ensure the gaseous emission from the project meets the air quality requirement | At monitoring locations shown in <i>Figure 11.3a</i> | SENTX
Contractor | | | √ | √ | Odour thresholds or 1% of Occupational Exposure Limit (OEL) as stipulated in the "UK Health and Safety Executive (HSE) EH 40/05 Occupational Exposure Limits", whichever is lower. | Implemented | | 4.10.2
and
SENTX
latest | AQ43 | Monitoring of parameters for thermal oxidizer, flares and generator in accordance with requirements stated in Tables 3.4a, 3.5a and 3.6a of the EM&A Manual respectively. | Ensure the gaseous emission from the project meets the air | At the flares
and thermal
oxidizer stacks
when they are | SENTX
Contractor | | | ✓ | √ (1) | Emission Limits specified in Contract | Implemented | ⁽¹⁾ For LFG flare and LFG generator only. | EIA Ref. | EM&A
Ref | ef Mitigation Measures | Objectives of the
Recommended
Measure & Main | | Who to implement the measure? | the | | implei
ure? ⁽¹⁾
O/R | | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |--|-------------|---|--
---|-------------------------------|-----|---|--------------------------------------|---|---|--------------------------------------| | | | | Concerns to address | | <u> </u> | | | <i>0</i> /10 | | | | | design | | | quality
requirement | in operation | | | | | | | | | 4.10.2 | AQ44 | To confirm design assumption of ammonia, it is recommended that the ammonia concentration in the flue gas of the thermal oxidiser be monitored during the commissioning stage of the thermal oxidiser. If required, an emission standard will be set for ammonia for the thermal oxidiser based on the monitoring results. If no ammonia is detected in the flue gas during the decommissioning stage, the monitoring of ammonia in the flue gas of the thermal oxidiser could be discontinued. | Ensure the gaseous emission from the project meets the air quality requirement | At the thermal oxidizer stack during commissioning . If ammonia is detected during commissioning stage, the monitoring will continue. | SENTX
Contractor | | | * | | Emission Limits
determined during
commissioning stage | Implemented | | 4.10.2
and
SENTX
latest
design | AQ45 | Odour patrol in accordance with requirements stated in Table 3.7a of the EM&A Manual. | Ensure the odour
emission from the
project meets the
odour
requirement | • | SENTX
Contractor | | | ✓ | | EIAO-TM Annex 4 | Implemented | | 4.10.2 | AQ46 | Monitoring of meteorological station, continuously | Collect site
specific
meteorological
data | At meteorological station shown in <i>Figure 11.3a</i> | SENTX
Contractor | | ✓ | ✓ | ✓ | - | Implemented | | Noise - Co | onstructio | on Phase | | | | | | | | | | | 5.7.1 | N1 | Adopt good site practice listed below: • Only well-maintained plant will be | To minimise potential construction | All construction | SENTX
Contractor | | ✓ | | | Noise Control
Ordinance (NCO) and | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | the mea | o implement
sure? ⁽¹⁾
O/R A | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |----------|-------------|--|--|--|-------------------------------|---------|--|--|--------------------------------------| | | | operated on-site and plant should be serviced regularly during the construction program; | noise nuisance. | works area | | | | EIAO-TM Annex 5 | | | | | Silencers or mufflers on construction
equipment should be utilized and will be
properly maintained during the
construction program; | | | | | | | | | | | • Mobile plant, if any, will be sited as far from NSRs as possible; | | | | | | | | | | | Machines and plant (such as trucks) that
may be in intermittent use will be shut
down between work periods or should be
throttled down to a minimum; | | | | | | | | | | | Plant known to emit noise strongly in one direction will, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and | | | | | | | | | | | Material stockpiles and other structures
will be effectively utilised, wherever
practicable, in screening noise from on-site
construction activities. | | | | | | | | | 5.8 | N2 | Weekly noise monitoring | Ensure noise generated from the project meets the criteria | At monitoring locations shown in Figure 6.4a | SENTX
Contractor | ✓ | | Noise Control
Ordinance (NCO) and
EIAO-TM Annex 5 | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | When to im
the measure
D C C | - | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |-----------|-------------|--|--|--|-------------------------------|------------------------------------|---|--|--------------------------------------| | Noise - O | peration | Restoration Phase | | | | | | | | | 5.7.2 | N3 | Adopt good site practice listed below: • Choose quieter PME; | To minimise potential operational noise nuisance. | Within the
SENTX Site | SENTX
Contractor | , | / | Noise Control
Ordinance (NCO) and
EIAO-TM Annex 5 | Implemented | | | | Include noise levels specification when ordering new plant items; | | | | | | - | Implemented | | | | • Locate fixed plant items or noise emission points away from the NSRs as far as practicable; | | | | | | - | Implemented | | | | Locate noisy machines in completely
enclosed plant rooms or buildings; and | | | | | | - | Implemented | | | | Develop and implement a regularly scheduled plant maintenance programme so that plant items are properly operated and serviced. The programme should be implemented by properly trained personnel. | | | | | | - | Implemented | | 5.8 | N4 | Weekly noise monitoring | Ensure noise generated from the project meets the criteria | At monitoring locations shown in Figure 6.4a | SENTX
Contractor | ~ | | Noise Control
Ordinance (NCO) and
EIAO-TM Annex 5 | Implemented | | Water Qu | ality - Co | onstruction Phase | | | | | | | | | 6.8.1 | WQ1 | Construction RunoffExposed soil areas will be minimised to | To minimise | All | SENTX | ✓ | | ProPECC PN 1/94 | Implemented | ENVIRONMENTAL RESOURCES MANAGEMENT | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | the | | impleme
sure? ⁽¹⁾
O/R | or standards for th | e Status and Remarks | |----------|-------------|---|---|-----------------------------|-------------------------------|-----|---|--|--|--| | | | reduce the contamination of runoff and erosion. | potential water
quality impacts
arising from the
construction
works | construction
works area | Contractor | | | | EIAO-TM Annex 6 | | | 6.8.1 | WQ2 | • Perimeter channels will be constructed in | To minimise | All | SENTX | ✓ | ✓ | | ProPECC PN 1/94 | Implemented | | | | advance of site formation works and earthworks and intercepting channels will be provided for example along the edge of excavation. | potential water
quality impacts
arising from the
construction | construction
works area | Contractor | | | | Water Pollution
Control Ordinance
(WPCO) | | | | | excavation. | works | | | | | | EIAO-TM Annex 6 | | | 6.8.1 | WQ3 | • Silt removal facilities, channels and | To minimise | All | SENTX | | ✓ | | ProPECC PN 1/94 | Deficiency of | | | | manholes will be maintained and the deposited silt and grit should be removed | potential water
quality impacts | construction
works area | Contractor | | | | WPCO | mitigation measures but rectified by the | | | | regularly to ensure they are functioning properly at all times. | arising from the construction works | , erro area | | | | | EIAO-TM Annex 6 | Contractor | | 6.8.1 | WQ4 | Temporary covers such as tarpaulin will | To minimise | All | SENTX | | ✓ | | ProPECC PN 1/94 | Implemented | | | | also be provided to minimise the generation of high SS runoff. | potential water
quality impacts
arising from the
construction
works | construction
works area | Contractor | | | | WPCO | | | 6.8.1 | WQ5 | The surface runoff contained any oil and | To minimise | All | SENTX | | ✓ | | ProPECC PN 1/94 | Implemented | | | | grease will pass through the oil interceptors. | potential water
quality impacts | construction
works area | Contractor | | | | WPCO | | | | | merceptors. | arising from the construction works | orno urcu | | | | | EIAO-TM Annex 6 | | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | the r | | implement
ure? ⁽¹⁾
O/R A | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |----------|-------------|---
--|---|-------------------------------|-------|----------|---|--|---| | 6.8.1 | WQ6 | All sewer and drains will be sealed to
prevent building debris, soil etc from
entering public sewers/drains before
commencing any demolition works | To minimise potential water quality impacts arising from the demolition works | Infrastructure
area at existing
SENT Landfill | SENTX
Contractor | | ✓ | | ProPECC PN 1/94
WPCO
EIAO-TM Annex 6 | Not applicable | | 6.8.1 | WQ7 | During the excavation works for the twin
drainage tunnels, the recycle water for
cooling the cutter head of the TBM will be
conveyed to the sedimentation tanks for
treatment and most of the treated water
will be reused, where applicable and as
much as possible, in the boring operations. | To minimise potential water quality impacts arising from the tunnel works | Tunnel boring sites | SENTX
Contractor | | √ | | ProPECC PN 1/94
WPCO
EIAO-TM Annex 6 | Not applicable.
Excavation of drainage
tunnels is not required
in the latest landfill
design. | | 6.8.1 | WQ8 | The fuel and waste lubricant oil from the on-site maintenance of machinery and equipment will be collected by a licensed chemical waste collector. | To minimise potential water quality impacts arising from improper handling of fuel and oil | SENTX Site | SENTX
Contractor | | √ | | ProPECC PN 1/94 WPCO Waste Disposal Ordinance (WDO) | Implemented | | 6.8.1 | WQ9 | Implementation of excavation schedules,
lining and covering of excavated stockpiles | To minimise contaminated stormwater runoff from the SENTX Site | All construction works | SENTX
Contractor | | ✓ | | ProPECC PN 1/94
WPCO
EIAO-TM Annex 6 | Implemented | | 6.13 | WQ10 | Monitoring of surface water quality will be
conducted on a regular basis as stated in
the EM&A Manual. | To minimise potential water quality impacts on surface water arising from the | SENTX Site | SENTX
Contractor | | ✓ | | WPCO
Water-TM | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the Recommended | Location of the Measures | Who to implement | When | | mplement
re? ⁽¹⁾ | What requirements or standards for the | Implementation
Status and Remarks | |----------|-------------|--|--|--------------------------|---------------------|------|----------|--------------------------------|--|--------------------------------------| | | | | Measure & Main
Concerns to
address | | the measure? | D (| С | O/R A | measure to achieve? | | | | | | construction
works | | | | | | | | | 6.8.2 | WQ11 | Sewage Effluents | | | | | | | | | | | | • Sufficient chemical toilets will be provided for the construction workforce. | To minimise potential water quality impacts arising from the sewage effluents | SENTX Site | SENTX
Contractor | , | √ | | WPCO | Implemented | | 6.8.2 | WQ12 | Untreated sewage will not be allowed to
discharge into the surrounding water
body. | To minimise potential water quality impacts arising from the sewage effluents | SENTX Site | SENTX
Contractor | , | √ | | WPCO
WDO | Implemented | | 6.8.2 | WQ13 | A licensed waste collector will be
employed to clean the chemical toilets on a
regular basis. | To minimise potential water quality impacts arising from the sewage effluents | SENTX Site | SENTX
Contractor | , | √ | | WPCO
WDO | Implemented | | Water Qu | ıality - O | peration/Restoration and Aftercare Phases | | | | | | | | | | 6.9.1 | WQ14 | Surface Water Management | | | | | | | WPCO | Implemented | | | | • Inspections of the drainage system, sand traps, settlement ponds and surface water channels will be performed regularly to identify areas necessary for maintenance, cleaning or repair. | To minimise potential water quality impacts on surface water arising from the landfill operations. | SENTX Site | SENTX
Contractor | | | ✓ | Technical Memorandum Standards for Effluents Discharged into Drainage and Sewerage Systems, Inland and Inshore Waters (Water-TM) | | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the Recommended | Location of the Measures | Who to implement | When to | - | | What requirements or standards for the | Implementation
Status and Remarks | |-----------------|-------------|---|---|--------------------------|------------------|---------|-----|---|--|--------------------------------------| | | | | Measure & Main
Concerns to
address | | the measure? | D C | O/R | A | measure to achieve? | | | | | | | | | | | | EIAO-TM Annex 6 | | | 6.9.1 | WQ15 | • Regular maintenance and replacement, if | To minimise | SENTX Site | SENTX | | ✓ | | WPCO | Implemented | | | | required, of the HDPE liner will be conducted to prevent degradation from | potential water quality impacts | | Contractor | | | | Water-TM | | | | | affecting the performance of the capping system. | on surface water
arising from the
landfill
operations. | | | | | | EIAO-TM Annex 6 | | | 6.9.1 | WQ16 | • Monitoring of surface water quality will be | | SENTX Site | SENTX | | ✓ | ✓ | WPCO | Implemented | | | | conducted on a regular basis as stated in the EM&A Manual. | potential water
quality impacts
on surface water
arising from the
landfill
operations. | | Contractor | | | | Water-TM | | | 6.9.2 and | WQ17 | Groundwater Management | | | | | | | | Implemented | | SENTX
latest | | The groundwater management facilities | To minimise | SENTX Site | SENTX | | ✓ | ✓ | WPCO | | | design | | including the groundwater monitoring wells will be inspected regularly during | potential water quality impacts | | Contractor | | | | Water-TM | | | | | routine groundwater monitoring programme. | on groundwater arising from the landfill operations. | | | | | | EIAO-TM Annex 6 | | | 6.9.2 | WQ18 | Monitoring of groundwater water quality | To minimise | SENTX Site | SENTX | | ✓ | ✓ | WPCO | Implemented | | | | will be conducted on a regular basis as | potential water quality impacts | | Contractor | | | | Water-TM | | | | | Stated III the Livide A Marida. | on groundwater
arising from the | | | | | | EIAO-TM Annex 6 | | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the Recommended | Location of the Measures | Who to implement | | | impler
sure? ⁽¹⁾ | nent | What requirements or standards for the | Implementation
Status and Remarks | |---------------------------|-------------|---|---|--|---------------------|---|---|--------------------------------|------|--|--------------------------------------| | | | | Measure & Main
Concerns to
address
landfill
operations. | | the measure? | D | С | O/R | A | measure to achieve? | | | SENTX
latest
design | WQ19 | Sewage All sewage from the operation staff will be diverted to the LTP for treatment or public sewer, if available. | To ensure proper
handling of
sewage | SENTX Site | SENTX
Contractor | | | ✓ | ✓ | - | Implemented | | 6.9.3 | WQ20 | The leachate pump houses and related ancillary equipment will be inspected regularly and repairs, if necessary. | To minimise potential water quality impacts on surrounding water bodies arising from the landfill operations. | Leachate
pump houses
and related
ancillary
equipment | SENTX
Contractor | | | ✓ | ✓ | WPCO
Water-TM
EIAO-TM Annex 6 | Implemented | | 6.9.3 | WQ21 | For equipment such as pumps that require routine scheduled maintenance, the maintenance will be performed following manufacturer's recommended frequency. | To minimise potential water quality impacts on surrounding water bodies arising from the landfill operations. | Leachate
pumps | SENTX
Contractor | | | √ | ✓ | WPCO
Water-TM | Implemented | | 6.9.3 | WQ22 | • Preventive maintenance will be implemented so that the possibility for forced shutdown during wet season will be kept to minimal. | To minimise potential water quality impacts on surrounding water bodies | Leachate
treatment
plant | SENTX
Contractor | | | ✓ | ✓ | WPCO
Water-TM
EIAO-TM Annex 6 | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the Recommended | Location of the Measures | Who to implement | | | impler
sure? (1) | nent | What requirements or standards for the | Implementation
Status and Remarks | |--------------------|-------------
---|---|--|---------------------|---|---|---------------------|------|--|--------------------------------------| | | | | Measure & Main
Concerns to
address
arising from the | | the measure? | D | С | O/R | A | measure to achieve? | | | | | | landfill operations. | | | | | | | | | | 5.9.3 | WQ23 | • Emergency procedures or a contingency plan will be established when the LTP is | To minimise potential water | Leachate
treatment | SENTX
Contractor | | | ✓ | ✓ | WPCO | Implemented | | | | malfunctioned. | quality impacts | plant | Contractor | | | | | Water-TM | | | | | | on surrounding water bodies arising from the landfill operations. | | | | | | | EIAO-TM Annex 6 | | | 5.9.3 and
SENTX | WQ24 | • There will be sufficient redundancy in the system to handle the leachate flow even if | To minimise potential water | Leachate
treatment | SENTX
Contractor | | | ✓ | ✓ | WPCO | Implemented | | atest | | one treatment train is down for | quality impacts | plant | Contractor | | | | | Water-TM | | | design | | maintenance. The leachate may be required to temporarily store within the landfill if the leachate storage lagoon are full and leachate cannot be transported to the LTP for treatment. | on surrounding water bodies arising from the landfill operations. | | | | | | | EIAO-TM Annex 6 | | | 5.13 | WQ25 | 1 3 | To ensure | Leachate | SENTX | | | ✓ | ✓ | WPCO | Implemented | | | | from the LTP | discharge quality
comply with
WPCO
requirement | treatment
plant
discharge
point | Contractor | | | | | Water-TM | | | 6.10.1 | WQ26 | Potential Leakage of Leachate | | | | | | | | | Implemented | | | | Regular groundwater quality monitoring | To minimise | SENTX Site | SENTX | | | ✓ | ✓ | WPCO | | | | | will be carried out to monitor the performance of the leachate containment system. | potential water
quality impacts
on surrounding | | Contractor | | | | | Water-TM | | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the Recommended | Location of the Measures | Who to implement | | | imple:
ure? ⁽¹⁾ | | What requirements or standards for the | Implementation
Status and Remarks | |----------|-------------|---|--|---|---------------------|---|----------|-------------------------------|---|--|--------------------------------------| | | Kei | witigation weasures | Measure & Main Concerns to address water bodies arising from the landfill operations. | the Weasures | the measure? | | | O/R | | measure to achieve? | Status and Remarks | | 6.10.1 | WQ27 | Maintenance and replacement of the
capping system should be carried out, if
necessary, to prevent control infiltration
and leachate seepage from any damaged
cap. | To minimise potential water quality impacts on surrounding water bodies arising from the leachate leakage. | SENTX Site | SENTX
Contractor | | | ✓ | ✓ | WPCO Water-TM EIAO-TM Annex 6 | Implemented | | 6.10.1 | WQ28 | Maintaining control of the leachate level through extraction | To minimise potential water quality impacts on surrounding water bodies arising from surface breakout of leachate. | SENTX Site | SENTX
Contractor | | | ✓ | ✓ | WPCO Water-TM EIAO-TM Annex 6 | Implemented | | Waste Ma | anagemen | t – Construction Phase | | | | | | | | | | | 7.6.1 | WM1 | All the necessary waste disposal permits are obtained prior to the commencement of construction work. | To ensure compliance with relevant statutory requirements | Before
construction
works
commence | SENTX
Contractor | ✓ | ✓ | | | WDO | Implemented | | 7.6.1 | WM2 | Management of Waste Disposal The construction contractor will open a billing account with the EPD. Every construction waste or public fill load to be | To ensure that adverse environmental | SENTX Site | SENTX
Contractor | | ✓ | | | WDO
Waste Disposal
(Charges for Disposal | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the Recommended | Location of the Measures | Who to implement | | to imp | lement | What requirements or standards for the | Implementation
Status and Remarks | |----------|-------------|--|--|--------------------------|---------------------|---|----------|--------|--|--------------------------------------| | | rc1 | A TANAGARION MICHOUSES | Measure & Main
Concerns to
address | ne measures | the measure? | | | /R A | measure to achieve? | omino mini remarks | | | | transferred to the Government waste disposal facilities such as public fill reception facilities, | • | | | | | | of Construction Waste)
Regulation; | | | | | sorting facilities, landfills will required a valid "chit" which contains the information of the account holder to facilitate waste transaction recording and billing to the waste | | | | | | | Works Bureau
Technical Circular
No.31/2004; and | | | | | producer. A trip-ticket system will also be established to monitor the disposal of construction waste at the SENT Landfill and to control fly-tipping. The trip-ticket system will be included as one of the contractual requirements and implemented by the contractor. | | | | | | | Annex 5 and Annex 6 of Appendix G of ETWBTC No. 19/2005) | | | | | A recording system for the amount of waste generated, recycled and disposed of (including the disposal sites) will be established. | | | | | | | | | | 7.6.1 | WM3 | Measures for the Reduction of Construction Waste Generation | | | | | | | | | | | | Inert and non-inert construction waste will be segregated and stored in different containers | To reduce construction | SENTX Site | SENTX
Contractor | , | / | | WDO | Deficiency of mitigation measures | | | | or skips to facilitate reuse or recycling of the inert waste and proper disposal of the non-inert construction waste. Specific areas of the work site will be designated for such segregation and storage if immediate use is not practicable. | waste generation | | Contractor | | | | EIAO-TM Annex 7 | but rectified by the
Contractor | | 7.6.1 | WM4 | <u>Chemical Waste</u> | | | | | √ | | WDO | | | | | | | | | , | 7 | | VVDO | | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | the m | easu | mplement
are? ⁽¹⁾
O/R A | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |---------------------------|-------------|---|--|-----------------------------|-------------------------------|-------|------|--|---|--| | | | The construction contractor will register as a chemical waste producer with the EPD. Chemical waste will be handled in accordance with the <i>Code of Practice on the Packaging, Handling and Storage of Chemical Wastes</i> . | To ensure proper
handling of
chemical waste | SENTX Site | SENTX
Contractor | | | | Code of Practice on the
Packaging, Handling
and Storage of
Chemical Wastes | Deficiency of
mitigation measures
but rectified by the
Contractor | | 7.6.1 | WM5 | Sewage | | | | | | | | | | | | An adequate number of portable toilets will | To ensure proper | SENTX Site | SENTX | , | | | WDO | Implemented | | | | be provided at the site to ensure that sewage
from site staff is properly collected. The
portable toilets will be desludged and
maintained regularly by a specialist
contractor. | handling of
sewage | | Contractor | | | | EIAO-TM Annex 7 | | | 7.6.1 and | WM6 | General Refuse | | | | | | | | | | SENTX
latest
design | | General refuse will be stored in enclosed bins separately from construction and chemical wastes. The general refuse will be delivered to a transfer station or other landfill, separately from construction and chemical wastes, on a daily basis to reduce odour, pest and litter impacts. | To ensure proper
handling of
general refuse | SENTX Site | SENTX
Contractor | , | | | WDO
EIAO-TM Annex 7 | Deficiency of
mitigation measures
but rectified by the
Contractor | | | | Recycling bins will be provided at strategic locations to facilitate recovery of aluminium can and waste paper from the SENTX Site. Materials recovered will be sold for
recycling. | | | | | | | | | | 7.6.1 | WM7 | Staff Training | | | | | | | | | | | | At the commencement of the construction | To ensure that | SENTX Site | SENTX | , | / | | | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to | Location of the Measures | Who to implement the measure? | the m | ıeasu | mplen
ire? ⁽¹⁾
O/R | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |--|-------------|---|--|--------------------------|-------------------------------|-------|-------|-------------------------------------|--|--------------------------------------| | | | works, training will be provided to workers on the concepts of site cleanliness and on appropriate waste management procedures, including waste reduction, reuse and recycling. | address adverse environmental impacts are prevented | | Contractor | | | | | | | 7.8 | WM8 | Environmental Monitoring & Audit Requirements Weekly audits of the waste management practices will be carried out during the construction phase. The audits examine all aspects of waste management including waste generation, storage, recycling, transport and disposal. | To ensure that
adverse
environmental
impacts are
prevented | SENTX Site | SENTX
Contractor | | ✓ | | WDO | Implemented | | Waste Ma | ınagemen | t – Operation/Restoration Phase | | | | | | | | | | 7.6.2 and
SENTX
latest
design | WM9 | Sludge In case off-site disposal is required, the Contractor will ensure that sludge generated from the LTP will be delivered in closed container to other waste disposal facility e.g. other landfills or a sludge treatment facility, for proper disposal on a daily basis. | To ensure proper
handling of
sludge | SENTX Site | SENTX
Contractor | | | ✓ | WDO
EIAO-TM Annex 7 | Implemented | | 7.6.2 | WM10 | Chemical Waste The construction contractor will register as a chemical waste producer with the EPD. Chemical waste will be handled in | To ensure proper
handling of
chemical waste | SENTX Site | SENTX
Contractor | | | √ | WDO
EIAO-TM Annex 7 | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | When to implement the measure? (1) D C O/R A | | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |--|-------------|--|--|-----------------------------|-------------------------------|--|----------|---|---| | | | accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes. | | | | | | Code of Practice on the
Packaging, Handling
and Storage of
Chemical Wastes | | | 7.6.2 | WM11 | <u>Sewage</u> | | | | | | | Moved to mitigation | | | | All sewage from the operation staff will be diverted to the LTP for treatment or public sewer, if available. | To ensure proper
handling of
sewage | SENTX Site | SENTX
Contractor | | ✓ | WDO
EIAO-TM Annex 7 | measure under water quality WQ19. It is a measure for water quality rather than waste management. | | 7.6.2 and | WM12 | General Refuse | | | | | | | Implemented | | SENTX
latest
design | | General refuse will be stored in enclosed bins
and disposed of at other landfills or transfer
station on a daily basis to reduce odour, pest
and litter impacts. | To ensure proper
handling of
general refuse | SENTX Site | SENTX
Contractor | | √ | WDO
EIAO-TM Annex 7 | | | | | Recycling bins will be provided at strategic locations to facilitate recovery of aluminium can and waste paper from the SENTX Site. Materials recovered will be sold for recycling. | | | | | | | | | Landfill C | Gas Hazaı | rds – Design and Construction Phase | | | | | | | | | 8.6.2 and
SENTX
latest
design | LFG1 | Precautionary measures to be adopted by the contractors at the Project site and the adjacent development site within the landfill consultation zone are outlined in Paragraphs 8.3 to 8.49 of EPD's Landfill Gas Hazard Assessment Guidance Notes (the Guidance Note). | • | All construction works area | SENTX
Contractor | √ | | Paragraphs 8.3 to 8.49
of EPD's Landfill Gas
Hazards Assessment
Guidance Note
EIAO-TM Annex 7 | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | the measure? (1) | | | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | | |----------|-------------|---|--|---|-------------------------------|------------------|---|---|--|--------------------------------------|-------------| | | | Those precautionary measures applicable to
the SENTX will be confirmed in the detailed
Qualitative Landfill Gas Hazard Assessment
to be submitted by the contractor. | | | | | | | | | | | 8.6.2 | LFG2 | Monitoring will be undertaken when construction works are carried out in confined space within the consultation zone with reference to the monitoring requirements and procedures specified in Paragraphs 8.23 to 8.28 of EPD's <i>Guidance Note</i> will be followed. | To protect
workers from
landfill gas risk | Confined space within the construction works area | SENTX
Contractor | | ✓ | | | | Implemented | | | | In the event of the trigger levels being exceeded, it is recommended that a person, such as the Safety Officer, is nominated, with deputies, to be responsible for dealing with any emergency which may occur due to landfill gas. In an emergency situation, the nominated person, or his deputies, shall have the necessary authority and shall ensure that the confined space is evacuated and the necessary works implemented for reducing the concentrations of gas. The appropriate organisations shall be contact. | | | | | | | | | | | 8.6.3 | LFG4 | Implementation of engineering measures according to Contract Specification requirements. These measures will include the placement of liner and installation of landfill gas management system to contain, manage and control landfill gas. | To protect
workers from
landfill gas risk | SENTX Site | SENTX
Contractor | √ | ✓ | ✓ | ✓ | EIAO-TM Annex 7 | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the Recommended | Location of the Measures | Who to implement | | | impler
sure? (1) | | What requirements or standards for the | Implementation
Status and Remarks | |----------------------------|-------------|---|---|--------------------------------|---------------------|---|---|---------------------|---|---|--------------------------------------| | | | J | Measure & Main
Concerns to
address | | the measure? | | С | O/R | | measure to achieve? | | | 8.6.3 | LFG5 | Engineering measures to significant engineering measures will be required in the design of the SENTX to protect the staff | To protect
workers from
landfill gas risk | Infrastructure
Area | SENTX
Contractor | ✓ | ✓ | | | EPD's Landfill Gas
Hazards Assessment
Guidance Note | Implemented | | | | working in the infrastructure area. These measures include a combination of passive and active systems (examples are recommended in EPD's <i>Guidance Notes</i>). | | | | | | | | EIAO-TM Annex 7 | | | | | Landfill gas monitoring boreholes will be installed at the edge of the waste slope between the waste and the new infrastructure area to monitor the
migration of landfill gas, if any. | | | | | | | | | | | Landfill (
Phases | Gas Hazaı | rds – Operation, Restoration and Aftercare | | | | | | | | | | | 8.6.4 | LFG7 | To train and ensure staff to take appropriate precautions at all times when entering enclosed spaces or plant rooms. Undertake regular monitoring of landfill gas at the perimeter boreholes to detect if there are any signs of off-site landfill gas migration. Prepare and implement emergency plan in case off-site landfill gas migration is detected. | To protect
workers from
landfill gas risk | SENTX Site | SENTX
Contractor | | | ✓ | ✓ | Landfill Gas Hazards
Assessment Guidance
Note | Implemented | | | | A permanent gas monitoring system with alarm will be installed and operated in all occupied on-site buildings. | | | | | | | | | | | 8.7 and
SENTX
latest | LFG8 | Environmental Monitoring & Audit Requirements | To protect
workers from
landfill gas risk | Within the SENTX and along the | SENTX
Contractor | | | ✓ | ✓ | | Implemented | | design | | Undertake regular monitoring of landfill gas | J | SENTX | | | | | | | | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | the mea | o implemen
asure? ⁽¹⁾
O/R A | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |------------------|-------------|---|--|-----------------------------|-------------------------------|---------|--|--|--------------------------------------| | | | within the SENTX and along the SENTX boundary as required by the Contract Specification. | | boundary | | | | Landfill Gas Hazards
Assessment Guidance
Note | | | Ecology - | Construc | tion Phase | | | | | | | | | 9.10.2 | EC1 | Measures to control construction runoff: | To minimise | All | SENTX | ✓ | | EIAO-TM Annex 16 | Implemented | | | | • Exposed soil areas will be minimised to | potential water quality impacts | construction
works area | Contractor | | | ProPECC PN 1/94 | | | | | reduce the contamination of runoff and erosion; | affecting ecological resources | works area | | | | Water Pollution
Control Ordinance
(WPCO) | | | | | | | | | | | EIAO-TM Annex 6 | | | | | To prevent stormwater runoff from
washing across exposed soil surfaces,
perimeter channels will be constructed
in advance of site formation works and
earthworks and intercepting channels
will be provided for example along the
edge of excavation; | | | | | | - | Implemented | | | | Silt removal facilities, channels and
manholes will be maintained and the
deposited silt and grit will be removed
regularly to ensure they are functioning
properly at all times; | | | | | | - | Implemented | | | | Temporary covers such as tarpaulin will
also be provided to minimise the
generation of high suspended solids | | | | | | - | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | the me | to imple
easure? (1
C O/R |) | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |----------------------------------|-------------|--|--|-----------------------------|-------------------------------|--------|---------------------------------|---|--|--------------------------------------| | | | runoff; The surface runoff contained any oil and grease will pass through the oil interceptors; and, | | | | | | | - | Implemented | | | | Control measures, including implementation of excavation schedules, lining and covering of excavated stockpiles will be implemented to minimise contaminated stormwater run-off from the SENTX site. | | | | | | | - | Implemented | | 9.10.2 | EC2 | Good Construction Practice: | | | | | | | | | | and
SENTX
latest
design | | • Fences along the boundary of the SENTX Site will be erected before the commencement of works to prevent vehicle movements, and encroachment of personnel, onto adjacent areas. | To minimise potential ecological impacts arising from the Project | SENTX Site | SENTX
Contractor | ✓ | | | EIAO-TM Annex 16 | Implemented | | | | • The work site boundaries will be regularly checked to ensure that they are not breached and that damage does not occur to surrounding areas. | | | | | | | | | | Ecology - | Operatio | n, Restoration and Aftercare Phases | | | | | | | | | | 9.10.2 | EC3 | Measures for Controlling Leakage of Landfill Leachate Leachate will be contained within the SENTX Site by the proposed impermeable leachate containment system and collected by the | To minimise potential water quality impact affecting the | SENTX Site | SENTX
Contractor | | √ | ✓ | EIAO-TM Annex 16
WPCO
Water-TM | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the Recommended | Location of the Measures | Who to implement | | | implen
ure? ⁽¹⁾ | nent | What requirements or standards for the | Implementation
Status and Remarks | |--|-------------|--|---|--------------------------|---------------------|---|---|-------------------------------|------|--|--------------------------------------| | | Kei | whitigation weasures | Measure & Main
Concerns to
address | the Measures | - | D | С | O/R | A | measure to achieve? | Status and Remarks | | | | installation of drainage system to prevent potential migration of leachate to habitats in the vicinity. | ecological
resources | | | | | | | EIAO-TM Annex 6 | | | 9.10.2 | EC4 | Measures for Controlling Migration of
Landfill Gas | | | | | | | | | Implemented | | | | Disturbance to habitat in the vicinity and associated wildlife due to migration of landfill gas will be prevented by proper management of the landfill gas generated from the SENTX. Ignition fires will be prohibited to occur within the boundary of the SENTX Site. Surface emission and offsite migration of landfill gas will be regularly monitored. | To minimise potential landfill gas migration affecting ecological resources | SENTX Site | SENTX
Contractor | | | ✓ | ✓ | EIAO-TM Annex 16 | | | 9.10.3
and
SENTX
latest
design | EC5 | The following compensation planting is recommended as the mitigation measures for the habitat affected due to the SENTX: Provision of 6 ha of mixed woodland planting to compensate the loss of shrubland; and | Compensation of
habitat loss due
to the Project | SENTX Site | SENTX
Contractor | | | ✓ | ✓ | EIAO-TM Annex 16 | Implemented | | | | Provision of a mosaic of grassland and
shrubland in the remaining areas of the
SENTX Site. Compensatory planting and restoration of the
SENTX can be implemented progressively
according to the filling plan of SENTX. | | | | | | | | | | | 9.10.3 | EC6 | The mixture of grassland, shrubland and woodland habitats are recommended to diversify the habitats for supporting various wildlife in particular butterflies, birds and | To diversify habitats | SENTX Site | SENTX
Contractor | | | ✓ | ✓ | EIAO-TM Annex 16 | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the Recommended | Location of the Measures | Who to implement | | implen
ure? ⁽¹⁾ | nent | What requirements or standards for the | Implementation Status and Remarks | |----------|-------------|--
---|--------------------------|---------------------|----------|-------------------------------|------|--|-----------------------------------| | | | G | Measure & Main
Concerns to
address | | the measure? | | O/R | A | measure to achieve? | | | | | herpetofauna and blend into the existing undisturbed ecological environment. | | | | | | | | | | 9.10.3 | EC7 | Indigenous plant species of shallow root system, softwood in nature and adaptive to sea shore habitat are recommended to be used in the restoration plan, which can establish well in coastal area with exposure to strong wind and salt spray, with sand soil base. Taking consideration of the relative poor substrate and the difficulties of establishment of some native trees in Hong Kong, it is recommended to include approximately 20% of non-native tree species in the compensatory woodland. The non-native tree species can serve as a nurse species to facilitate the establishment of the native tree species, especially the shading, and it can be replaced by established native tree species progressively. Plant species can also make reference to food plants of butterfly species (in particularly butterfly species of conservation interests recorded within the | To enhance ecological value of the habitats | SENTX Site | SENTX
Contractor | | | ✓ | EIAO-TM Annex 16 | Implemented | | 9.10.3 | EC8 | CWBCP). It is also recommended that a trial nursery for native plant species be set up to fine tone the planting matrix and management intensity of the recommended indigenous tree species for the restoration of the SENTX. It should be noted that native shrubs and tree species had been used for restoration of the existing SENT Landfill, native plant species that could not | To select the most
suitable
indigenous tree
species for the
SENTX | SENTX Site | SENTX
Contractor | ✓ | √ | ✓ | EIAO-TM Annex 16 | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the Recommended | Location of the Measures | Who to implement | | imple
ure? (1) | | What requirements or standards for the | Implementation
Status and Remarks | |----------|-------------|--|---|-----------------------------------|---------------------|---|-------------------|---|--|--------------------------------------| | | Kei | Miligation Measures | Measure & Main
Concerns to
address | the Medsures | the measure? | C | O/R | | measure to achieve? | Surus unu Remurks | | | | successfully be established on the existing SENT Landfill should be reviewed before the preparation of the compensatory planting list. Special care and intensive management of native plant should be implemented in order to ensure proper establishment of the native plants. | | | | | | | | | | 9.12.1 | EC9 | Environmental Monitoring & Audit Requirements The implementation of the ecological mitigation measures should be checked as part of the environmental monitoring and audit procedures during the construction period. | To ensure that
adverse
ecological
impacts are
prevented | SENTX | SENTX
Contractor | ✓ | ✓ | ✓ | EIAO-TM Annex 16 | Implemented | | Landscap | e and Vis | ual - Construction Phase | | | | | | | | | | 10.6.5 | LV1 | CM1 - The construction area and area allowed for the contractor's office, leachate treatment plant and laboratory areas will be minimised to a practical minimum, to avoid impacts on adjacent landscape. | To minimise the landscape and visual impacts | SENTX Site | SENTX
Contractor | ✓ | | | EIAO-TM Annex 18
and ETWBC 3/2006 | Implemented | | 10.6.5 | LV2 | CM2 - Topsoil, where identified, will be stripped and stored for re-use in the construction of the soft landscape works, where practical. The Contract Specification will include storage and reuse of topsoil as appropriate. | To minimise the landscape and visual impacts | All
construction
works area | SENTX
Contractor | ✓ | | | EIAO-TM Annex 18 | Not applicable | | 10.6.5 | LV3 | CM3 - All existing trees at the edges of the landfill will be carefully protected during | To minimise the landscape and | Potential impacted area | SENTX
Contractor | ✓ | | | EIAO-TM Annex 18
and ETWBC 3/2006 | Not applicable | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | on Measures Recommended the Measures implement the measure? (1) Measure & Main the measure? D C O/R A Concerns to address | | - | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | | | | |--|-------------|--|---|--------------------------------------|---------------------|--|--------------------------------------|--|--------------------------------------|-------------| | | | construction. Detailed Tree Protection Specification will be provided in the Contract Specification. Under this Specification, the Contractor will be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in Contractor's works areas. | visual impacts | | | | | | | | | 10.6.5 | LV4 | CM4 - Trees unavoidably affected by the works will be transplanted, where necessary and practical. A detailed Tree Transplanting Specification will be provided in the Contract Specification, if applicable. Sufficient time for necessary tree root and crown preparation periods will be allowed in the project programme. | To minimise the landscape and visual impacts | Potential
impacted area | SENTX
Contractor | ✓ | √ | | EIAO-TM Annex 18
and ETWBC 3/2006 | Implemented | | 10.6.5
and
SENTX
latest
design | LV5 | CM5 - Within 3 months of taking possession of the SENTX Site, the Contractor will plant advance screen planting of native species at Light Standard size at 1.5m centres along the High Junk Peak Trail so as to screen views of the Works from the trail. Tree planting locations will be agreed with AFCD. Works will be completed within 9 months of taking possession of the SENTX Site. | To minimise the landscape and visual impacts | At High Junk
Peak Hiking
Trail | SENTX
Contractor | | ✓ | | EIAO-TM Annex 18 | Implemented | | 10.6.5 | LV6 | CM6 - The Contractor's office, leachate treatment plant and laboratory will be given an aesthetic treatment in earth tones to reduce their visual impact and albedo and blend | To minimise the landscape and visual impacts | Infrastructure
area | SENTX
Contractor | ✓ | ✓ | | EIAO-TM Annex 18 | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | When to implement the measure? (1) ? D C O/R A | | sure? (1) | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |--|-------------|---|---|-----------------------------|-------------------------------|--|----------|-----------|--|--------------------------------------| | 10.6.5 | LV7 | them into the surrounding landscape. CM7 - The Contractor's office, leachate treatment plant and laboratory will be surrounded by a minimum of 5m wide and 0.75m high earth bund on the west and south sides planted with a dense screen of tree and shrub vegetation. Additional tree planting will be provided in unused spaces with thin infrastructure site, along access roads and in and around car parks. This will be supplemented with shrub planting, where appropriate. | To minimise the landscape and visual impacts | Infrastructure
area | SENTX
Contractor | ✓ | ✓ | | EIAO-TM Annex 18
and ETWBC 7/2002 | Not applicable | | 10.6.5 | LV8 | CM8 - Planting trials will be carried out in an on-site nursery prior to implementation of the first phase of restoration to establish the best planting matrix and management intensity of the recommended plant materials for the restoration. | landscape and | SENTX Site | SENTX
Contractor | | ✓ | | EIAO-TM Annex 18 | Implemented | | 11.4.1
and
SENTX
latest
design | LV9 | During the
preparation of the detailed landscape design plan, the design submission will be audited against the recommendation proposed in the <i>ER Report</i> by the Registered Landscape Architect from the ET. | To ensure the implementation of mitigation measures proposed in this EIA Report | SENTX Site | SENTX
Contractor/E
T | ✓ | ✓ | | EIAO-TM Annex 18 | Implemented | | Landscap | e and Vis | ual - Operation/Restoration Phase | | | | | | | | | | 10.6.5
and
SENTX | LV10 | OM1 - Landfill materials will be covered with general fill material or tarpaulin sheet on a daily basis to reduce visual impact. | To minimise the landscape and visual impacts | Tipping area | SENTX
Contractor | | | ✓ | EIAO-TM Annex 18 | Implemented | | EIA Ref. | EM&A
Ref | Environmental Protection Measures/
Mitigation Measures | Objectives of the
Recommended
Measure & Main
Concerns to
address | Location of
the Measures | Who to implement the measure? | the m | easu | mplement
re? ⁽¹⁾
O/R A | What requirements or standards for the measure to achieve? | Implementation
Status and Remarks | |--|-------------|--|--|-----------------------------|-------------------------------|-------|------|---|--|--------------------------------------| | latest
design | | | | | | | | | | | | 10.6.5
and
SENTX
latest
design | LV11 | OM2 - Filling and restoration will be phased during the course of operations in a minimum of 4 phases, the restoration of each phase to commence immediately on the completion of filling in that phase. | To minimise the landscape and visual impacts | Tipping area | SENTX
Contractor | | | ✓ | EIAO-TM Annex 18 | Implemented | | 10.6.5 | LV12 | OM3 - Catch fences will be erected at the perimeter of the waste boundary, to ensure that all waste stays within the site and is not blown into surrounding areas. | To minimise the landscape and visual impacts | Tipping area | SENTX
Contractor | | | ✓ | EIAO-TM Annex 18 | Implemented | | 10.6.5 | LV13 | OM4 - All night-time lighting will be reduced to a practical minimum both in terms of number of units and lux level and will be hooded and directional. | To minimise the landscape and visual impacts | Tipping area | SENTX
Contractor | | | ✓ | EIAO-TM Annex 18 | Implemented | | 11.4.2
and
SENTX
latest
design | LV14 | The condition of the restoration plantation will be audited at monthly intervals by a Registered Landscape Architect from the ET. | To check the restoration plantation | SENTX Site | SENTX
Contractor/E
T | | | ✓ | EIAO-TM Annex 18 | Implemented | #### Annex C ## Monitoring Schedule for This Reporting Period ## South East New Territories (SENT) Landfill Extension EM&A Impact Monitoring Schedule during Operation/ Restoration Phase January 2022 | Sun | Mon | Tue | Wed | Thu | Fri | Sat | |---------------------|---------------------|--------------------------|---------------------|-----------------------------|---------------------|---------------------| | | | | | | | | | | | | | | | Odour Monitoring | | | | | | | | Leachate Monitoring | | | | | | | | | | | 2 | 3 | . 5 | 6 | 7 | | | Odour Monitoring | Leachate Monitoring | | | Groundwater Monitoring | | Dust Monitoring | Noise Monitoring | | | | | | | | | | | | 9 | 10 | 12 | 13 | 14 | 1 | | Odour Monitoring | Leachate Monitoring | | | Groundwater Monitoring | Stack Monitoring | Noise Monitoring | | | | | | | Dust Monitoring | | | | | | 16 | 17 | 19 | 20 | 21 | 2 | | Odour Monitoring | Leachate Monitoring | | | Perimeter LFG Monitoring | Noise Monitoring | Service Void LFG Monitoring | | | | | | Dust Monitoring | | | | | | | 23 | 24 25 | 26 | 27 | 28 | 2 | | Odour Monitoring | Leachate Monitoring | | Dust Monitoring | Noise Monitoring | | | | | | | | Surface Water Monitoring | | | | | | | 30 | 31 | | | | | | Odour Monitoring | Odour Monitoring | | | | | | | Leachate Monitoring | Leachate Monitoring | | | | | | | Dust Monitoring | Noise Monitoring | | | | | | | | | | | | | | ## South East New Territories (SENT) Landfill Extension EM&A Impact Monitoring Schedule during Operation/ Restoration Phase February 2022 | Sun | Mon | Tue | Wed | Thu | Fri | Sat | |---------------------|---------------------|--------------------------|---------------------------------|--------------------------|-----------------------------|---------------------| | | | 1 | 2 | 3 | 4 | 5 | | | | Odour Monitoring | Odour Monitoring | Odour Monitoring | Odour Monitoring | Leachate Monitoring | | | | | | Leachate Monitoring | Leachate Monitoring | Dust Monitoring | | | | | | | | | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | Leachate Monitoring | | Noise Monitoring | | Perimeter LFG Monitoring | | Dust Monitoring | | | | | | | | Service Void LFG Monitoring | | | | | | | | Stack Monitoring | | | | | | | | Odour Monitoring | | | 13 | 14 | 15 | 16 | 17 | 18 | 19 | | Leachate Monitoring | | Noise Monitoring | Groundwater Monitoring | Perimeter LFG Bulk Gas Sampling | Dust Monitoring | Groundwater Monitoring | | | | Stack Monitoring | VOCs Monitoring | | | Odour Monitoring | | | | | Flammable Gas Monitoring | | | | | | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | Leachate Monitoring | | Odour Monitoring | | Dust Monitoring | Surface Water Monitoring | | | | | | | | Noise Monitoring | | | | | | | | | | | | 27 | 28 | | | | | | | Leachate Monitoring | Leachate Monitoring | | | | | | | | Odour Monitoring | #### South East New Territories (SENT) Landfill Extension EM&A Impact Monitoring Schedule during Operation/ Restoration Phase March 2022 | Sun | Mon | Tue | Wed | Thu | Fri | Sat | |--------------------------------------|--|--|---|------------------------|--|--| | | | 1 Leachate Monitoring Dust Monitoring | Leachate Monitoring Noise Monitoring | Leachate Monitoring | 4 Leachate Monitoring | 5
Leachate Monitoring | | 6 Leachate Monitoring | 7 Leachate Monitoring Dust Monitoring Stack Monitoring Odour Monitoring | 8 Leachate Monitoring Perimeter LFG Monitoring Noise Monitoring Stack Monitoring | g
Leachate Monitoring | Leachate Monitoring | 11 Leachate Monitoring Service Void LFG Monitoring | 12
Leachate Monitoring | | Leachate Monitoring Dust Monitoring | 14 Leachate Monitoring Groundwater Monitoring Noise Monitoring | 15 Leachate Monitoring Groundwater Monitoring | 16 Leachate Monitoring Odour Monitoring | 17 Leachate Monitoring | 18 Leachate Monitoring | 19 Leachate Monitoring Dust Monitoring | | 20 Leachate Monitoring | Leachate Monitoring Noise Monitoring Surface Water Monitoring Odour Monitoring | 22
Leachate Monitoring | 23
Leachate Monitoring | 24 | 25 Dust Monitoring | 26 | | 27 | 28
Noise Monitoring | 29
Odour Monitoring | 30 | Dust Monitoring | | | #### Annex D ## Air Quality #### Annex D1 ## 24-hour TSP Monitoring Results Table D1.1 24-hour TSP Monitoring Results at AM1 | Start Date | Start Time | Finish Date | Finish Time | Weather | 24-hour TSP (μg/m3) | |------------|------------|-------------|-------------|---------|---------------------| | 6 Jan 22 | 9:00 | 7 Jan 22 | 9:00 | Fine | 210 | | 12 Jan 22 | 9:00 | 13 Jan 22 | 9:00 | Fine | 182 | | 18 Jan 22 | 9:00 | 19 Jan 22 | 9:00 | Fine | 155 | | 24 Jan 22 | 9:00 | 25 Jan 22 | 9:00 | Fine | 61 | | 30 Jan 22 | 9:00 | 31 Jan 22 | 9:00 | Fine | 55 | | 5 Feb 22 | 9:00 | 6 Feb 22 | 9:00 | Fine | 60 | | 11 Feb 22 | 9:00 | 12 Feb 22 | 9:00 | Fine | 132 | | 17 Feb 22 | 9:00 | 18 Feb 22 | 9:00 | Fine | 56 | | 23 Feb 22 | 9:00 | 24 Feb 22 | 9:00 | Fine | 42 | | 1 Mar 22 | 9:00 | 2 Mar 22 | 9:01 | Fine | 62 | | 7 Mar 22 | 9:00 | 8 Mar 22 | 9:00 | Fine | 68 | | 13 Mar 22 | 9:00 | 14 Mar 22 | 9:01 | Fine | 113 | | 19 Mar 22 | 9:00 | 20 Mar 22 | 9:00 | Fine | 133 | | 25 Mar 22 | 16:00 | 26 Mar 22 | 16:38 | Fine | 107 | | 31 Mar 22 | 9:00 | 1 Apr 22 | 8:41 | Fine | 104 | | | | | | Average | 103 | | | | | | Min | 42 | | | | | | Max | 210 | Figure D1.1 Graphical Presentation for 24-hr TSP Monitoring at AM1 Table D1.2 24-hour TSP Monitoring Results at AM2 | Start Date | Start Time | Finish Date | Finish Time | Weather | 24-hour TSP (μg/m3) | |------------|------------|-------------|-------------|---------|---------------------| | 6 Jan 22 | 9:00 | 7 Jan 22 | 9:00 | Fine | 102 | | 12 Jan 22 | 9:00 | 13 Jan 22 | 9:00 | Fine | 91 | | 18 Jan 22 | 9:00 | 19 Jan 22 | 9:00 | Fine | 64 | | 24 Jan 22 | 9:00 | 25 Jan 22 | 9:00 | Fine | 41 | | 30 Jan 22 | 9:00 | 31 Jan 22 | 9:00 | Fine | 32 | | 5 Feb 22 | 9:00 | 6 Feb 22 | 9:00 | Fine | 32 | | 11 Feb 22 | 9:00 | 12 Feb 22 | 9:01 | Fine | 85 | | 17 Feb 22 | 9:00 | 18 Feb 22 | 9:00 | Fine | 40 | | 23 Feb 22 | 9:00 | 24 Feb 22 | 9:01 | Fine | 65 | | 1 Mar 22 | 9:00 | 2 Mar 22 | 9:03 | Fine | 84 | | 7 Mar 22 | 9:00 | 8 Mar 22 | 9:01 | Fine | 69 | | 13 Mar 22 | 9:00 | 14 Mar 22 | 9:00 | Fine | 106 | | 19 Mar 22 | 9:00 | 20 Mar 22 | 9:00 | Fine | 72 | | 25 Mar 22 | 9:00 | 26 Mar 22 | 8:45 | Fine | 50 | | 31 Mar 22 | 9:00 | 1 Apr 22 | 8:47 | Fine | 39 | | | | | | Average | 65 | | | | | | Min | 32 | | | | | | Max | 106 | Figure D1.2 Graphical Presentation for 24-hr TSP Monitoring at AM2 Table D1.3 24-hour TSP Monitoring Results at AM3 | Start Date | Start Time | Finish Date | Finish Time | Weather | 24-hour TSP (μg/m3) | |------------|------------|-------------|-------------|---------
---------------------| | 6 Jan 22 | 10:17 | 7 Jan 22 | 10:17 | Fine | 179 | | 12 Jan 22 | 9:00 | 13 Jan 22 | 9:00 | Fine | 218 | | 18 Jan 22 | 9:00 | 19 Jan 22 | 9:00 | Fine | 136 | | 24 Jan 22 | 9:00 | 25 Jan 22 | 9:00 | Fine | 117 | | 30 Jan 22 | 9:00 | 31 Jan 22 | 9:00 | Fine | 100 | | 5 Feb 22 | 9:00 | 6 Feb 22 | 9:01 | Fine | 131 | | 11 Feb 22 | 9:00 | 12 Feb 22 | 9:00 | Fine | 140 | | 17 Feb 22 | 9:00 | 18 Feb 22 | 9:00 | Fine | 71 | | 23 Feb 22 | 9:00 | 24 Feb 22 | 9:01 | Fine | 57 | | 1 Mar 22 | 9:00 | 2 Mar 22 | 8:52 | Fine | 171 | | 7 Mar 22 | 11:35 | 8 Mar 22 | 11:28 | Fine | 146 | | 13 Mar 22 | 9:00 | 14 Mar 22 | 9:12 | Fine | 198 | | 19 Mar 22 | 9:00 | 20 Mar 22 | 9:00 | Fine | 211 | | 25 Mar 22 | 14:11 | 26 Mar 22 | 13:58 | Fine | 35 | | 31 Mar 22 | 9:00 | 1 Apr 22 | 8:19 | Fine | 224 | | | | | | Average | 142 | | | | | | Min | 35 | | | | | | Max | 224 | Figure D1.3 Graphical Presentation for 24-hr TSP Monitoring at AM3 Table D1.4 24-hour TSP Monitoring Results at AM4 | Start Date | Start Time | Finish Date | Finish Time | Weather | 24-hour TSP (μg/m3) | |------------|------------|-------------|-------------|---------|---------------------| | 6 Jan 22 | 9:00 | 7 Jan 22 | 9:00 | Fine | 108 | | 12 Jan 22 | 9:00 | 13 Jan 22 | 9:00 | Fine | 132 | | 18 Jan 22 | 9:00 | 19 Jan 22 | 9:00 | Fine | 127 | | 24 Jan 22 | 9:00 | 25 Jan 22 | 9:00 | Fine | 53 | | 30 Jan 22 | 9:00 | 31 Jan 22 | 9:00 | Fine | 103 | | 5 Feb 22 | 9:00 | 6 Feb 22 | 9:01 | Fine | 85 | | 11 Feb 22 | 9:00 | 12 Feb 22 | 9:00 | Fine | 107 | | 17 Feb 22 | 9:00 | 18 Feb 22 | 9:00 | Fine | 47 | | 23 Feb 22 | 9:00 | 24 Feb 22 | 9:00 | Fine | 62 | | 1 Mar 22 | 9:00 | 2 Mar 22 | 9:00 | Fine | 107 | | 7 Mar 22 | 9:00 | 8 Mar 22 | 9:00 | Fine | 66 | | 13 Mar 22 | 9:00 | 14 Mar 22 | 9:01 | Fine | 101 | | 19 Mar 22 | 9:00 | 20 Mar 22 | 9:00 | Fine | 77 | | 25 Mar 22 | 9:00 | 26 Mar 22 | 9:15 | Fine | 33 | | 31 Mar 22 | 9:00 | 1 Apr 22 | 8:59 | Fine | 100 | | | | | | Average | 102 | | | | | | Min | 33 | | | | | | Max | 132 | Figure D1.4 Graphical Presentation for 24-hr TSP Monitoring at AM4 #### Annex D2 # Event and Action Plan for Air Quality Monitoring ### Annex D2 Event and Action Plan for Air Quality Monitoring During Operation/Restoration Phase | | | Action | | |---|--|--|---| | Event | ET | IEC | Contractor | | Exceedance of
Action/Limit
Level for dust
monitoring | Identify the source(s) and investigate the cause(s) of exceedance Prepare the Notification of Exceedance within 24 hours Inform Contractor, IEC, Project Proponent and EPD (EIAO Authority) whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures Ensure remedial measures are properly implemented Assess effectiveness of Contractor's remedial measures and keep the Project Proponent and IEC informed of the results Repeat measurement to confirm finding if exceedance is due to the Project Increase monitoring frequency to daily and continue until the monitoring results reduce to below action level | Verify the Notification of Exceedance Check monitoring data submitted by ET Check Contractor's working methods Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures Audit the effectiveness of the implemented remedial measures | Take immediate action to avoid further exceedance Submit proposals for remedial measures to IEC Implement the agreed proposals Amend proposal if appropriate | | Exceedance of
Action Level
for odour | Identify source(s) and investigate the cause(s) of exceedance or complaint Prepare the odour complaint form or the Notification of Exceedance within 24 hours Inform Contractor, IEC and Project Proponent whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures Ensure remedial measures are properly implemented Increase monitoring frequency to daily until odour not being detected for three consecutive day | Verify the Notification of Exceedance Check monitoring data submitted by ET Check Contractor's working methods Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures Audit the effectiveness of the implemented remedial measures | Rectify any unacceptable practice Amend working methods as required Implement amended working methods, if necessary | | | Action | | | | | | | |--|---|--|---|--|--|--|--| | Event | ET | IEC | Contractor | | | | | | Exceedance of
Limit Level for
odour | Identify source(s) and investigate the cause(s) of exceedance or complaint Prepare the odour complaint form or the Notification of Exceedance within 24 hours Inform Contractor, IEC, Project Proponent and EPD (EIAO Authority) whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures Ensure remedial measures are properly implemented Assess effectiveness of Contractor's remedial measures and keep the Project Proponent and IEC informed of the results | Verify the Notification of Exceedance Check with Contractor on the operating activities and implementation of odour mitigation measures Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures Audit the effectiveness of the implemented remedial measures | Rectify any unacceptable practice Submit proposals for remedial measures to IEC within 3 working days of notification Implement the agreed proposal or amend working methods as required Resubmit proposals if problem still not under control | | | | | | Exceedance of
Limit Level for
ambient VOCs,
ammonia and
H ₂ S at the
monitoring
locations | Identify the source(s) and investigate the cause(s) of exceedance Prepare the Notification of Exceedance within 24 hours Inform Contractor, IEC, Project Proponent and EPD (EIAO Authority) whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures Ensure remedial measures are properly implemented Assess effectiveness of Contractor's remedial measures and keep the Project Proponent and IEC informed of the results Repeat measurement to confirm finding if exceedance is due to the Project Increase monitoring frequency to monthly and continue until the monitoring results
reduce to below limit level | Check with Contractor on the operating
activities and implementation of landfill gas
control measures | Rectify any unacceptable practice Amend working methods as required Implement amended working methods, if necessary | | | | | | | | Action | | |--|--|--|--| | Event | ET | IEC | Contractor | | Exceedance of
Limit Level of
stack emission
of the thermal
oxidizer, flares
and generator | Identify source(s) and investigate the cause(s) of exceedance Prepare the Notification of Exceedance within 24 hours Inform Contractor, IEC, Project Proponent and EPD (EIAO Authority) whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures Ensure remedial measures are properly implemented Assess effectiveness of Contractor's remedial measures and keep the Project Proponent and IEC informed of the results Repeat measurement to confirm finding if exceedance is due to the Project Increase monitoring frequency to monthly when there are two consecutive exceedances and continue until the monitoring results reduce to below limit level | Verify the Notification of Exceedance Check with Contractor on the operating performance of the stack Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures Audit the effectiveness of the implemented remedial measures | Rectify any unacceptable performance Amend design as required Implement amended design, if necessary | ## Annex D3 # Meteorological Data ## Annex D3 Meteorological Data ### Jan 2022 ### Feb 2022 ### Mar 2022 ## Annex D4 # **Odour Monitoring Results** Table D4.1 Odour Monitoring Results | Date | Weather | Location | Time | Temperature | Wind Speed | Wind | From | Odour | Odour | Possible Source | Remarks | |----------|----------|----------|-------|-------------|------------|-----------|---------------------|-----------|----------------|--------------------------|---------| | | | | | (oC) | (m/s) | Direction | Project Site | Intensity | Characteristic | | | | 1-Jan-22 | Overcast | OP1 | 10:38 | 18.5 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP2 | 10:41 | 18.6 | 1.8 | S | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP3 | 10:45 | 18.3 | 1.6 | S | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP4 | 10:48 | 18.1 | 2.4 | E | No | 1 | Acidic | Leachate Treatment Plant | N/A | | 1-Jan-22 | Overcast | OP5 | 10:52 | 18.1 | 2.5 | E | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP6 | 10:55 | 18.5 | 0.8 | N | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP7 | 10:58 | 18.7 | 0.7 | N | Yes | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP8 | 11:02 | 18.6 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP9 | 11:06 | 18.8 | 1.2 | N | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP10 | 11:09 | 18.5 | 2.1 | N | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP11 | 11:20 | 18.8 | 0.4 | E | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP1 | 14:38 | 19.1 | 0.9 | S | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP2 | 14:41 | 19.7 | 0.4 | S | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP3 | 14:45 | 19.0 | 0.5 | SW | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP4 | 14:48 | 18.6 | 2.3 | E | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP5 | 14:52 | 18.4 | 2.5 | E | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP6 | 14:56 | 19.0 | 0.6 | N | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP7 | 14:59 | 18.7 | 1.5 | N | Yes | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP8 | 15:03 | 18.9 | 0.5 | N | Yes | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP9 | 15:07 | 19.4 | 0.6 | N | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP10 | 15:10 | 19.6 | 0.9 | NE | Yes | 0 | N/A | N/A | N/A | | 1-Jan-22 | Overcast | OP11 | 15:23 | 20.2 | 0.7 | W | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Fine | OP1 | 18:06 | 16.7 | 0.4 | N | Yes | 0 | N/A | N/A | N/A | | 1-Jan-22 | Fine | OP2 | 18:09 | 16.1 | 0.5 | S | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Fine | OP3 | 18:13 | 15.7 | 0.6 | SE | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Fine | OP4 | 18:17 | 15.5 | 0.8 | E | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Fine | OP5 | 18:20 | 15.6 | 1.4 | E | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Fine | OP6 | 18:23 | 15.5 | 1.4 | E | Yes | 0 | N/A | N/A | N/A | | 1-Jan-22 | Fine | OP7 | 18:27 | 15.7 | 0.7 | SW | No | 0 | N/A | N/A | N/A | | 1-Jan-22 | Fine | OP8 | 18:30 | 15.2 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 1-Jan-22 | Fine | OP9 | 18:34 | 14.9 | 0.5 | N | No | 1 | Acidic | Town Gas Plant | N/A | | 1-Jan-22 | Fine | OP10 | 18:37 | 15.0 | 1.1 | NE | Yes | 0 | N/A | N/A | N/A | | 1-Jan-22 | Fine | OP11 | 18:48 | 14.8 | 0.6 | E | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP1 | 10:45 | 23.5 | 0.7 | S | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP2 | 10:49 | 24.2 | 0.9 | S | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | Wind Speed | | From | Odour | Odour | Possible Source | Remarks | |----------|---------|----------|-------|-------------|------------|-----------|--------------|-----------|----------------|-----------------|---------| | | | | | (oC) | (m/s) | Direction | Project Site | Intensity | Characteristic | | | | 2-Jan-22 | Sunny | OP3 | 10:53 | 24.8 | 2.7 | SE | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP4 | 10:57 | 25.0 | 1.2 | E | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP5 | 11:00 | 25.3 | 0.8 | E | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP6 | 11:04 | 24.9 | 1.6 | N | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP7 | 11:07 | 24.6 | 1.8 | N | Yes | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP8 | 11:11 | 24.7 | 1.2 | S | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP9 | 11:15 | 24.9 | 2.4 | N | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP10 | 11:18 | 24.4 | 1.4 | N | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP11 | 11:29 | 24.1 | 4.3 | E | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP1 | 15:05 | 21.7 | 2.6 | S | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP2 | 15:09 | 21.2 | 3.7 | S | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP3 | 15:13 | 21.6 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP4 | 15:16 | 22.4 | 0.5 | E | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP5 | 15:20 | 22.5 | 1.1 | S | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP6 | 15:23 | 22.8 | 2.3 | S | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP7 | 15:27 | 21.7 | 2.6 | S | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP8 | 15:30 | 22.2 | 2.5 | S | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP9 | 15:34 | 22.9 | 1.3 | E | Yes | 0 | N/A | N/A | N/A | | 2-Jan-22 | Sunny | OP10 | 15:38 | 23.3 | 2.8 | S | No | 1 | Acidic | Town Gas Plant | N/A | | 2-Jan-22 | Sunny | OP11 | 15:49 | 22.9 | 1.2 | E | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Fine | OP1 | 18:00 | 18.8 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 2-Jan-22 | Fine | OP2 | 18:03 | 18.6 | 0.5 | N | Yes | 0 | N/A | N/A | N/A | | 2-Jan-22 | Fine | OP3 | 18:07 | 17.9 | 0.8 | E | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Fine | OP4 | 18:10 | 18.0 | 1.5 | W | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Fine | OP5 | 18:13 | 18.2 | 0.7 | S | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Fine | OP6 | 18:17 | 18.4 | 1.2 | N | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Fine | OP7 | 18:21 | 18.3 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 2-Jan-22 | Fine | OP8 | 18:25 | 17.9 | 1.0 | N | Yes | 1 | Town Gas | Town Gas Plant | N/A | | 2-Jan-22 | Fine | OP9 | 18:29 | 18.3 | 0.5 | N | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Fine | OP10 | 18:32 | 18.2 | 1.6 | N | No | 0 | N/A | N/A | N/A | | 2-Jan-22 | Fine | OP11 | 18:42 | 17.3 | 0.6 | N | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP1 | 10:40 | 23.0 | 0.7 | S | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP2 | 10:43 | 23.3 | 0.8 | S | No | 1 | Exhaust Gas | Vehicle | N/A | | 3-Jan-22 | Sunny | OP3 | 10:47 | 22.8 | 2.4 | W | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP4 | 10:50 | 23.4 | 1.3 | S | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP5 | 10:54 | 23.6 | 2.6 | E | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP6 | 10:57 | 23.2 | 3.4 | E | Yes | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP7 | 10:59 |
22.8 | 2.5 | S | No | 0 | N/A | N/A | N/A | | 3-Jan-22
3-Jan-22
3-Jan-22
3-Jan-22
3-Jan-22 | Sunny
Sunny
Sunny
Sunny | OP8
OP9 | 11:03 | (oC) | im/ci | | Duning Cit | Teatan - 11 | Classia at a viati | | | |--|----------------------------------|--------------|-------|-----------|-------|-----------|--------------|-------------|--------------------|--------------------|------------| | 3-Jan-22
3-Jan-22
3-Jan-22
3-Jan-22 | Sunny
Sunny | | 11:03 | 22.2 | (m/s) | Direction | Project Site | | Characteristic | NT / A | NT / 4 | | 3-Jan-22
3-Jan-22
3-Jan-22 | Sunny | OP9 | 44.05 | 23.3 | 3.2 | E | Yes | 0 | N/A | N/A | N/A | | 3-Jan-22
3-Jan-22 | , | 0.04.0 | 11:07 | 23.7 | 2.2 | N | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunnv | OP10 | 11:11 | 23.9 | 1.8 | E | Yes | 0 | N/A | N/A | N/A | | | , | OP11 | 11:21 | 23.7 | 2.9 | E | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP1 | 14:33 | 22.3 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | • | Sunny | OP2 | 14:36 | 21.5 | 0.5 | S | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP3 | 14:38 | 20.3 | 2.5 | SW | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP4 | 14:40 | 19.4 | 2.0 | E | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP5 | 14:42 | 19.4 | 2.2 | E | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP6 | 14:44 | 21.8 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP7 | 14:46 | 19.8 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP8 | 14:49 | 19.7 | 2.4 | NE | Yes | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP9 | 14:52 | 20.5 | 2.1 | N | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP10 | 14:53 | 22.0 | 0.7 | N | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Sunny | OP11 | 15:00 | 21.0 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 3-Jan-22 | Fine | OP1 | 18:06 | 20.1 | 0.4 | S | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Fine | OP2 | 18:09 | 19.6 | 0.6 | S | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Fine | OP3 | 18:13 | 19.1 | 0.9 | S | No | 1 | Oil | Electric Generator | N/A | | 3-Jan-22 | Fine | OP4 | 18:16 | 18.6 | 1.5 | S | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Fine | OP5 | 18:20 | 18.9 | 1.3 | E | No | 0 | N/A | N/A | N/A | | 3-Jan-22 | Fine | OP6 | 18:23 | 18.6 | 1.7 | E | Yes | 0 | N/A | N/A | N/A | | 3-Jan-22 | Fine | OP7 | 18:27 | 18.4 | 1.1 | N | Yes | 0 | N/A | N/A | N/A | | 3-Jan-22 | Fine | OP8 | 18:31 | 18.3 | 0.5 | N | Yes | 0 | N/A | N/A | N/A | | 3-Jan-22 | Fine | OP9 | 18:35 | 18.1 | 0.6 | N | No | 1 | Town Gas | Town Gas Plant | N/A | | 3-Jan-22 | Fine | OP10 | 18:38 | 18.0 | 0.4 | E | Yes | 0 | N/A | N/A | N/A | | 3-Jan-22 | Fine | OP11 | 18:47 | 17.6 | 0.7 | E | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP1 | 10:52 | 22.0 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP2 | 10:55 | 21.8 | 4.3 | S | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP3 | 10:59 | 21.6 | 3.4 | S | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP4 | 11:03 | 21.5 | 3.6 | E | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP5 | 11:07 | 21.6 | 2.5 | E | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP6 | 11:10 | 21.5 | 2.8 | S | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP7 | 11:14 | 21.9 | 0.9 | S | No | 0 | N/A | N/A | N/A | | 4-Jan-22
4-Jan-22 | Sunny | OP8 | 11:17 | 22.2 | 1.8 | S | No | 0 | N/A | N/A | N/A | | 4-Jan-22
4-Jan-22 | , | OP9 | 11:17 | 22.1 | 3.6 | N | No | 0 | N/A | N/A
N/A | N/A
N/A | | 4-Jan-22
4-Jan-22 | Sunny
Sunny | OP9
OP10 | 11:24 | 22.0 | 4.2 | N | No | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | • | , | OP10
OP11 | 11:24 | 23.4 | 0.7 | E | No | | • | - | • | | 4-Jan-22
4-Jan-22 | Sunny
Sunny | OP11
OP1 | 11:34 | 23.4 24.2 | 1.2 | E
W | No
Yes | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | Date | Weather | Location | Time | Temperature | - | | From | Odour | Odour | Possible Source | Remarks | |----------|----------------|------------|----------------|--------------|-------|-----------|--------------|-------|----------------|-------------------|------------| | 4.7. 00 | | O.D. | 446= | (oC) | (m/s) | Direction | Project Site | | Characteristic | NT / A | NT / 1 | | 4-Jan-22 | Sunny | OP2 | 14:35 | 23.8 | 1.7 | S | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP3 | 14:38 | 24.1 | 1.3 | SW | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP4 | 14:41 | 24.2 | 1.7 | E | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP5 | 14:45 | 24.6 | 3.0 | E | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP6 | 14:49 | 25.1 | 0.7 | N | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP7 | 14:53 | 25.9 | 0.8 | W | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP8 | 14:56 | 26.1 | 1.5 | E | Yes | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP9 | 15:00 | 26.3 | 2.4 | N | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP10 | 15:03 | 26.5 | 0.8 | N | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Sunny | OP11 | 15:13 | 24.7 | 0.5 | NE | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Fine | OP1 | 18:07 | 22.3 | 0.5 | S | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Fine | OP2 | 18:10 | 20.9 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 4-Jan-22 | Fine | OP3 | 18:14 | 20.3 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 4-Jan-22 | Fine | OP4 | 18:18 | 20.1 | 1.1 | E | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Fine | OP5 | 18:21 | 20.3 | 0.6 | NW | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Fine | OP6 | 18:25 | 19.9 | 0.8 | N | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Fine | OP7 | 18:28 | 20.0 | 0.7 | N | Yes | 0 | N/A | N/A | N/A | | 4-Jan-22 | Fine | OP8 | 18:31 | 20.1 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 4-Jan-22 | Fine | OP9 | 18:35 | 19.8 | 0.9 | N | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Fine | OP10 | 18:38 | 19.7 | 1.0 | N | No | 0 | N/A | N/A | N/A | | 4-Jan-22 | Fine | OP11 | 18:47 | 20.5 | 0.9 | W | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP1 | 10:55 | 25.5 | 1.7 | N | Yes | 1 | Grassy | Nearby Vegetation | N/A | | 5-Jan-22 | Sunny | OP2 | 10:58 | 23.1 | 1.3 | SW | Yes | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP3 | 11:01 | 22.8 | 0.6 | W | No | 1 | Diesel | Generator | N/A | | 5-Jan-22 | Sunny | OP4 | 11:05 | 23.9 | 0.4 | W | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP5 | 11:08 | 22.5 | 2.1 | E | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP6 | 11:11 | 24.2 | 1.2 | N | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP7 | 11:14 | 22.6 | 1.9 | NE | Yes | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP8 | 11:18 | 23.1 | 1.8 | NE | Yes | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP9 | 11:21 | 23.1 | 2.4 | E | Yes | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP10 | 11:24 | 24.4 | 2.8 | NE | Yes | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP11 | 11:32 | 22.7 | 2.8 | SE | No | 1 | Earthy | From the ground | N/A | | 5-Jan-22 | Sunny | OP1 | 14:35 | 25.9 | 3.0 | S | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP2 | 14:38 | 26.2 | 3.7 | S | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | , | OP3 | 14:41 | 25.4 | 2.4 | SW | No | 0 | N/A | N/A
N/A | N/A
N/A | | 5-Jan-22 | Sunny
Sunny | OP3 | 14:41 | 25.4
25.1 | 3.0 | S | No | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | 5-Jan-22 | , | OP4
OP5 | 14:45 | 24.8 | 2.6 | S | No | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | 0-jan-22 | Sunny
Sunny | OP5
OP6 | 14:49
14:52 | 24.8
25.7 | 2.6 | S
S | No
No | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | Date | Weather | Location | Time | Temperature | - | | From | Odour | Odour | Possible Source | Remarks | |----------|---------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|----------| | . | | 0.05 | | (oC) | (m/s) | Direction | Project Site | | Characteristic | 27/4 | . | | 5-Jan-22 | Sunny | OP7 | 14:55 | 25.3 | 3.4 | S | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP8 | 14:59 | 25.9 | 2.4 | S | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP9 | 15:02 | 26.0 | 2.2 | S | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP10 | 15:05 | 25.9 | 1.9 | S | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Sunny | OP11 | 15:15 | 26.3 | 0.9 | W | Yes | 0 | N/A | N/A | N/A | | 5-Jan-22 | Fine | OP1 | 18:00 | 22.1 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 5-Jan-22 | Fine | OP2 | 18:03 | 21.7 | 0.4 | E | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Fine | OP3 | 18:06 | 20.5 | 0.4 | SE | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Fine | OP4 | 18:10 | 20.3 | 0.6 | E | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Fine | OP5 | 18:14 | 20.6 | 0.5 | S | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Fine | OP6 | 18:17 | 20.7 | 0.9 | E | Yes | 0 | N/A | N/A | N/A | | 5-Jan-22 | Fine | OP7 | 18:21 | 20.6 | 0.4 | N | Yes | 0 | N/A | N/A | N/A | | 5-Jan-22 | Fine | OP8 | 18:25 | 20.4 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 5-Jan-22 | Fine | OP9 | 18:27 | 20.2 | 0.5 | S | No | 0 | N/A | N/A | N/A | | 5-Jan-22 | Fine | OP10 | 18:30 | 19.8 | 1.2 | NE | Yes | 0 | N/A | N/A | N/A | | 5-Jan-22 | Fine | OP11 | 18:40 | 19.4 | 0.6 | NE | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP1 | 10:35 | 24.7 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP2 | 10:39 | 25.1 | 3.2 | N | Yes | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP3 | 10:42 | 24.9 | 1.8 | W | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP4 | 10:45 | 24.7 | 0.8 | W | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP5 | 10:48 | 24.9 | 1.0 | NE | Yes | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP6 | 10:50 | 25.2 | 1.2 | N | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP7 | 10:53 | 25.3 | 1.5 | N | Yes | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP8 | 10:57 | 25.1 | 0.9 | NE | Yes | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP9 | 11:00 | 25.2 | 1.8 | NE | Yes | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP10 | 11:02 | 25.3 | 0.4 | S | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP11 | 11:15 | 25.2 | 2.1 | E | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP1 | 14:49 | 25.5 | 2.3 | S | No | 0 | N/A | N/A | N/A | | 6-Jan-22
| Sunny | OP2 | 14:52 | 24.8 | 2.7 | S | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP3 | 14:55 | 24.2 | 2.3 | S | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP4 | 14:59 | 24.1 | 2.2 | E | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP5 | 15:03 | 24.6 | 3.0 | S | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP6 | 15:07 | 25.3 | 1.8 | S | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP7 | 15:10 | 26.0 | 2.4 | S | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP8 | 15:14 | 25.8 | 4.1 | S | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP9 | 15:14 | 26.3 | 1.4 | S | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP10 | 15:20 | 26.6 | 1.6 | S | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Sunny | OP11 | 15:30 | 25.1 | 0.6 | N | No | 0 | N/A | N/A
N/A | N/A | | Date | Weather | Location | Time | Temperature (oC) | Wind Speed
(m/s) | Wind
Direction | From
Project Site | Odour
Intensity | Odour
Characteristic | Possible Source | Remarks | |----------|---------|----------|-------|------------------|---------------------|-------------------|----------------------|--------------------|-------------------------|--------------------|---------| | 6-Jan-22 | Fine | OP1 | 18:09 | 20.6 | 1.2 | W | Yes | 0 | N/A | N/A | N/A | | 6-Jan-22 | Fine | OP2 | 18:13 | 20.2 | 1.7 | W | Yes | 0 | N/A | N/A | N/A | | 6-Jan-22 | Fine | OP3 | 18:17 | 20.3 | 0.6 | SW | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Fine | OP4 | 18:20 | 20.5 | 2.5 | E | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Fine | OP5 | 18:24 | 20.4 | 3.2 | E | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Fine | OP6 | 18:27 | 20.3 | 1.5 | E | Yes | 0 | N/A | N/A | N/A | | 6-Jan-22 | Fine | OP7 | 18:30 | 20.2 | 0.8 | S | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Fine | OP8 | 18:34 | 20.2 | 0.5 | S | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Fine | OP9 | 18:37 | 20.2 | 0.5 | W | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Fine | OP10 | 18:40 | 20.0 | 0.4 | N | No | 0 | N/A | N/A | N/A | | 6-Jan-22 | Fine | OP11 | 18:51 | 19.5 | 0.6 | E | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP1 | 10:50 | 24.5 | 3.1 | S | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP2 | 10:53 | 25.6 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP3 | 10:56 | 24.6 | 1.5 | N | Yes | 1 | Oil | Electric Generator | N/A | | 7-Jan-22 | Sunny | OP4 | 11:00 | 24.0 | 1.3 | E | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP5 | 11:04 | 23.9 | 2.0 | E | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP6 | 11:07 | 23.1 | 2.4 | E | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP7 | 11:10 | 24.3 | 2.9 | S | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP8 | 11:13 | 25.0 | 1.4 | E | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP9 | 11:17 | 25.5 | 0.8 | S | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP10 | 11:21 | 24.8 | 3.3 | E | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP11 | 11:32 | 25.6 | 1.5 | E | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP1 | 14:34 | 22.7 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP2 | 14:37 | 21.7 | 0.9 | SE | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP3 | 14:40 | 20.9 | 1.1 | SW | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP4 | 14:43 | 21.5 | 0.8 | NW | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP5 | 14:46 | 20.8 | 0.4 | NE | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP6 | 14:48 | 21.0 | 0.7 | SE | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP7 | 14:50 | 20.9 | 1.9 | S | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP8 | 14:54 | 21.7 | 0.6 | S | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP9 | 14:56 | 21.8 | 2.1 | N | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP10 | 14:59 | 20.0 | 2.2 | NE | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Sunny | OP11 | 15:08 | 23.2 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 7-Jan-22 | Fine | OP1 | 18:16 | 19.0 | 0.4 | S | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Fine | OP2 | 18:19 | 18.2 | 0.7 | E | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Fine | OP3 | 18:22 | 17.9 | 0.9 | NE | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Fine | OP4 | 18:26 | 18.0 | 1.5 | E | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Fine | OP5 | 18:30 | 18.4 | 1.1 | N | Yes | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |----------|---------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|---------| | | | | | (oC) | (m/s) | Direction | Project Site | | Characteristic | ~~/. | | | 7-Jan-22 | Fine | OP6 | 18:33 | 18.2 | 0.9 | E | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Fine | OP7 | 18:37 | 18.0 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Fine | OP8 | 18:40 | 17.9 | 0.5 | N | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Fine | OP9 | 18:44 | 17.7 | 0.7 | N | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Fine | OP10 | 18:47 | 17.6 | 0.4 | E | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Fine | OP11 | 18:57 | 18.0 | 0.6 | E | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP1 | 10:38 | 22.4 | 1.4 | S | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP2 | 10:41 | 22.1 | 2.4 | S | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP3 | 10:45 | 22.5 | 0.6 | SW | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP4 | 10:48 | 22.6 | 1.8 | E | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP5 | 10:52 | 22.8 | 2.9 | E | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP6 | 10:55 | 22.7 | 1.0 | S | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP7 | 10:59 | 22.9 | 1.1 | S | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP8 | 11:03 | 22.8 | 2.6 | N | Yes | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP9 | 11:07 | 22.7 | 2.6 | N | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP10 | 11:10 | 22.9 | 1.3 | N | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP11 | 11:22 | 23.2 | 2.1 | S | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP1 | 14:37 | 23.2 | 0.4 | S | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP2 | 14:40 | 22.9 | 1.4 | S | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP3 | 14:44 | 23.0 | 0.7 | SE | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP4 | 14:47 | 22.7 | 3.0 | E | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP5 | 14:51 | 23.3 | 1.3 | E | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP6 | 14:55 | 23.8 | 1.4 | E | Yes | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP7 | 14:58 | 24.0 | 1.1 | E | Yes | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP8 | 15:01 | 24.1 | 1.3 | SE | Yes | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP9 | 15:05 | 23.6 | 1.9 | W | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP10 | 15:08 | 23.3 | 2.0 | E | Yes | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP11 | 15:20 | 23.0 | 1.2 | E | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Fine | OP1 | 18:07 | 20.7 | 0.5 | N | Yes | 0 | N/A | N/A | N/A | | 8-Jan-22 | Fine | OP2 | 18:10 | 20.0 | 0.7 | E | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Fine | OP3 | 18:14 | 19.8 | 0.5 | SE | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Fine | OP4 | 18:17 | 19.3 | 1.3 | E | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Fine | OP5 | 18:20 | 20.4 | 0.7 | E | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Fine | OP6 | 18:24 | 20.2 | 1.1 | N | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Fine | OP7 | 18:27 | 19.5 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 8-Jan-22 | Fine | OP8 | 18:30 | 19.0 | 1.1 | E | Yes | 0 | N/A | N/A | N/A | | 8-Jan-22 | Fine | OP9 | 18:34 | 19.1 | 1.5 | S | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Fine | OP10 | 18:37 | 18.9 | 2.1 | E | Yes | 0 | N/A | N/A
N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |-----------|---------|----------|--------|-------------|-------|-----------|--------------|-------|----------------|-----------------|---------| | | | | 10 = 0 | (oC) | (m/s) | Direction | Project Site | | Characteristic | ~~/. | | | 8-Jan-22 | Fine | OP11 | 18:50 | 19.6 | 0.4 | N | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP1 | 10:45 | 20.9 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP2 | 10:49 | 19.9 | 3.3 | SE | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP3 | 10:52 | 20.0 | 2.8 | W | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP4 | 10:56 | 20.2 | 2.3 | E | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP5 | 11:00 | 19.9 | 3.1 | E | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP6 | 11:04 | 20.2 | 2.5 | NE | Yes | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP7 | 11:08 | 20.8 | 1.7 | SW | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP8 | 11:11 | 20.3 | 2.3 | SW | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP9 | 11:15 | 21.0 | 0.6 | N | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP10 | 11:18 | 20.9 | 0.5 | NW | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP11 | 11:28 | 20.7 | 0.8 | E | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP1 | 15:11 | 20.8 | 1.7 | SE | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP2 | 15:07 | 21.0 | 0.7 | SE | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP3 | 15:04 | 22.3 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP4 | 15:01 | 22.3 | 0.9 | S | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP5 | 14:57 | 21.5 | 1.0 | SE | Yes | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP6 | 14:54 | 21.7 | 1.1 | SE | Yes | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP7 | 14:50 | 21.5 | 2.0 | S | Yes | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP8 | 14:46 | 22.3 | 0.7 | S | Yes | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP9 | 14:42 | 22.0 | 1.4 | S | Yes | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP10 | 14:39 | 21.7 | 1.1 | N | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP11 | 14:30 | 23.1 | 0.8 | E | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP1 | 18:00 | 20.3 | 0.4 | SE | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP2 | 18:04 | 20.1 | 0.4 | SE | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP3 | 18:07 | 18.2 | 0.5 | W | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP4 | 18:11 |
18.2 | 4.0 | W | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP5 | 18:15 | 18.1 | 0.5 | NW | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP6 | 18:18 | 18.1 | 0.7 | SE | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP7 | 18:22 | 17.9 | 0.5 | SW | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP8 | 18:26 | 17.9 | 0.7 | SW | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP9 | 18:30 | 18.0 | 0.4 | S | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP10 | 18:33 | 17.7 | 0.5 | NE | No | 0 | N/A | N/A | N/A | | 9-Jan-22 | Fine | OP11 | 18:42 | 19.1 | 0.5 | NE | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP1 | 10:40 | 20.4 | 2.0 | N | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP2 | 10:43 | 21.0 | 1.3 | S | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP3 | 10:47 | 20.7 | 0.8 | S | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP4 | 10:50 | 20.2 | 1.7 | E | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | - | | From | Odour | Odour | Possible Source | Remarks | |--------------------|---------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|---------| | 40.1 22 | T: | ODE | 40.54 | (oC) | (m/s) | Direction | Project Site | | Characteristic | NT / A | NT / A | | 10-Jan-22 | Fine | OP5 | 10:54 | 21.4 | 1.6 | E | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP6 | 10:57 | 21.2 | 2.4 | E | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP7 | 11:01 | 20.9 | 2.6 | N | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP8 | 11:04 | 21.1 | 1.5 | N | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP9 | 11:07 | 22.3 | 0.7 | E | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP10 | 11:10 | 21.6 | 2.1 | E | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP11 | 11:19 | 21.9 | 1.0 | N | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP1 | 14:30 | 19.8 | 0.5 | NW | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP2 | 14:33 | 21.4 | 0.6 | S | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP3 | 14:36 | 22.3 | 0.5 | SW | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP4 | 14:38 | 21.6 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 10 - Jan-22 | Fine | OP5 | 14:41 | 20.8 | 2.2 | E | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP6 | 14:44 | 20.4 | 1.1 | NW | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP7 | 14:47 | 20.0 | 2.4 | N | Yes | 0 | N/A | N/A | N/A | | 10 - Jan-22 | Fine | OP8 | 14:50 | 20.2 | 1.7 | N | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP9 | 14:52 | 21.8 | 0.9 | N | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP10 | 14:55 | 20.4 | 2.3 | NE | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP11 | 15:03 | 19.3 | 1.5 | SE | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP1 | 18:06 | 20.4 | 0.5 | W | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP2 | 18:09 | 20.3 | 0.7 | W | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP3 | 18:13 | 19.6 | 1.1 | SW | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP4 | 18:16 | 19.1 | 1.4 | S | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP5 | 18:20 | 19.3 | 0.7 | E | No | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP6 | 18:23 | 19.5 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP7 | 18:27 | 19.4 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP8 | 18:30 | 19.2 | 0.7 | N | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP9 | 18:34 | 19.3 | 0.9 | E | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP10 | 18:37 | 19.2 | 0.7 | E | Yes | 0 | N/A | N/A | N/A | | 10-Jan-22 | Fine | OP11 | 18:47 | 19.1 | 0.6 | S | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP1 | 10:55 | 18.4 | 3.3 | N | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP2 | 10:58 | 18.3 | 3.9 | N | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP3 | 11:02 | 19.5 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP4 | 11:05 | 20.3 | 1.8 | N | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP5 | 11:08 | 19.6 | 2.1 | E | No | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP6 | 11:12 | 19.1 | 3.3 | N | No | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP7 | 11:15 | 19.4 | 3.1 | N | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP8 | 11:19 | 19.0 | 4.4 | N | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP9 | 11:22 | 18.8 | 2.1 | N | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |------------------------|----------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|---------| | 44 7 22 | | OD4.0 | 44.0= | (oC) | (m/s) | Direction | Project Site | | Characteristic | >T / A | NT / 1 | | 11-Jan-22 | Sunny | OP10 | 11:25 | 18.2 | 2.4 | N | No | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP11 | 11:34 | 20.1 | 1.3 | E | No | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP1 | 14:30 | 20.0 | 2.7 | NW | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP2 | 14:32 | 19.3 | 3.3 | NW | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP3 | 14:35 | 20.9 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP4 | 14:37 | 20.9 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP5 | 14:43 | 20.1 | 2.2 | E | No | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP6 | 14:45 | 19.4 | 1.7 | NW | No | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP7 | 14:48 | 18.6 | 4.2 | N | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP8 | 14:51 | 19.0 | 2.0 | N | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP9 | 14:53 | 18.3 | 4.2 | N | No | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP10 | 14:55 | 19.5 | 2.4 | N | No | 0 | N/A | N/A | N/A | | 11-Jan-22 | Sunny | OP11 | 15:03 | 20.1 | 2.1 | SW | Yes | 1 | Earthy | Ground | N/A | | 11-Jan-22 | Fine | OP1 | 18:03 | 17.7 | 3.6 | NW | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Fine | OP2 | 18:06 | 17.5 | 3.5 | NW | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Fine | OP3 | 18:10 | 17.6 | 1.5 | NW | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Fine | OP4 | 18:13 | 17.4 | 1.8 | N | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Fine | OP5 | 18:17 | 17.5 | 1.2 | NW | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Fine | OP6 | 18:20 | 17.4 | 1.5 | N | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Fine | OP7 | 18:23 | 17.3 | 3.1 | N | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Fine | OP8 | 18:27 | 17.4 | 3.4 | N | Yes | 0 | N/A | N/A | N/A | | 11-Jan-22 | Fine | OP9 | 18:31 | 17.5 | 2.2 | N | No | 0 | N/A | N/A | N/A | | 11-Jan-22 | Fine | OP10 | 18:33 | 17.6 | 0.8 | N | No | 0 | N/A | N/A | N/A | | 11-Jan-22 | Fine | OP11 | 18:42 | 17.5 | 0.6 | E | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Sunny | OP1 | 10:50 | 20.1 | 2.3 | N | Yes | 0 | N/A | N/A | N/A | | 12-Jan-22 | Sunny | OP2 | 10:53 | 21.0 | 1.9 | S | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Sunny | OP3 | 10:57 | 20.3 | 2.1 | SW | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Sunny | OP4 | 11:00 | 21.2 | 2.2 | E | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Sunny | OP5 | 11:04 | 21.0 | 3.9 | E | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Sunny | OP6 | 11:07 | 20.9 | 1.4 | N | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Sunny | OP7 | 11:10 | 21.3 | 1.1 | N | Yes | 0 | N/A | N/A | N/A | | 12-Jan-22 | Sunny | OP8 | 11:14 | 20.2 | 1.1 | E | Yes | 0 | N/A | N/A | N/A | | 12-Jan-22 | Sunny | OP9 | 11:18 | 19.4 | 1.8 | N | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Sunny | OP10 | 11:21 | 19.6 | 1.7 | E | Yes | 0 | N/A | N/A | N/A | | 12-Jan-22 | Sunny | OP11 | 11:30 | 21.0 | 0.8 | E | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP1 | 14:41 | 20.0 | 0.8 | S | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP2 | 14:45 | 19.3 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 12-Jan-22
12-Jan-22 | Overcast | OP3 | 14:48 | 19.2 | 1.8 | S | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |-----------|----------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|---------| | 10 7 | | 071 | 4.5- | (oC) | (m/s) | Direction | Project Site | | Characteristic | 27/4 | **** | | 12-Jan-22 | Overcast | OP4 | 14:51 | 19.1 | 0.8 | W | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP5 | 14:55 | 18.4 | 2.4 | E | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP6 | 14:57 | 18.8 | 2.6 | S | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP7 | 15:00 | 19.2 | 0.8 | S | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP8 | 15:03 | 20.0 | 1.0 | S | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP9 | 15:06 | 19.8 | 1.5 | N | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP10 | 15:09 | 20.2 | 1.3 | N | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP11 | 15:17 | 20.1 | 1.4 | E | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP1 | 18:01 | 17.3 | 0.5 | NW | Yes | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP2 | 18:04 | 16.8 | 1.7 | NW | Yes | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP3 | 18:07 | 17.0 | 0.8 | SE | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP4 | 18:11 | 16.8 | 2.1 | E | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP5 | 18:15 | 16.6 | 2.5 | E | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP6 | 18:17 | 16.8 | 1.8 | SE | Yes | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP7 | 18:20 | 16.9 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP8 | 18:24 | 16.8 | 1.5 | E | Yes | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP9 | 18:27 | 17.0 | 1.2 | E | Yes | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP10 | 18:30 | 16.9 | 1.0 | N | No | 0 | N/A | N/A | N/A | | 12-Jan-22 | Overcast | OP11 | 18:40 | 16.8 | 1.4 | E | No | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP1 | 10:30 | 19.1 | 3.7 | NW | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP2 | 10:32 | 18.2 | 1.9 | N | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP3 | 10:34 | 18.2 | 2.0 | NE |
Yes | 1 | Diesel | Generator | N/A | | 13-Jan-22 | Overcast | OP4 | 10:38 | 18.8 | 0.9 | NE | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP5 | 10:41 | 17.1 | 3.0 | N | No | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP6 | 10:43 | 17.9 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP7 | 10:47 | 17.2 | 3.9 | N | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP8 | 10:50 | 17.5 | 2.0 | NE | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP9 | 10:52 | 17.7 | 2.7 | N | No | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP10 | 10:55 | 17.8 | 0.6 | N | No | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP11 | 11:03 | 17.8 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP1 | 14:45 | 20.7 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP2 | 14:48 | 20.3 | 3.0 | NW | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP3 | 14:51 | 20.6 | 1.3 | NE | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP4 | 14:55 | 20.3 | 0.7 | NE | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP5 | 14:59 | 19.8 | 1.1 | NE | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP6 | 15:03 | 19.5 | 2.7 | N | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP7 | 15:07 | 19.6 | 2.5 | NE | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP8 | 15:11 | 19.5 | 1.6 | NW | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |-----------|----------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|--------------------|---------| | | | | | (oC) | (m/s) | Direction | Project Site | | Characteristic | | | | 13-Jan-22 | Overcast | OP9 | 15:15 | 18.9 | 2.9 | NW | No | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP10 | 15:19 | 20.1 | 0.5 | NE | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP11 | 15:29 | 19.8 | 1.3 | NE | No | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP1 | 18:10 | 17.1 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP2 | 18:13 | 16.9 | 1.7 | N | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP3 | 18:17 | 17.8 | 1.1 | NE | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP4 | 18:20 | 17.8 | 2.4 | N | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP5 | 18:23 | 17.9 | 1.2 | NE | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP6 | 18:26 | 17.5 | 1.5 | NE | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP7 | 18:30 | 16.8 | 2.2 | N | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP8 | 18:33 | 16.9 | 1.1 | N | Yes | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP9 | 18:37 | 16.8 | 1.0 | NW | No | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP10 | 18:40 | 17.3 | 0.5 | N | No | 0 | N/A | N/A | N/A | | 13-Jan-22 | Overcast | OP11 | 18:49 | 17.1 | 1.1 | NE | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP1 | 10:40 | 16.2 | 3.2 | W | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP2 | 10:43 | 15.8 | 1.1 | S | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP3 | 10:47 | 16.0 | 1.9 | W | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP4 | 10:50 | 15.8 | 1.0 | E | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP5 | 10:53 | 15.7 | 2.6 | E | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP6 | 10:57 | 15.4 | 2.5 | E | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP7 | 11:00 | 15.5 | 2.9 | N | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP8 | 11:03 | 15.3 | 2.4 | E | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP9 | 11:07 | 14.9 | 3.6 | N | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP10 | 11:10 | 15.3 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP11 | 11:20 | 15.1 | 1.2 | E | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP1 | 14:40 | 16.7 | 1.3 | W | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP2 | 14:43 | 16.6 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP3 | 14:47 | 17.4 | 1.2 | SW | No | 1 | Oil | Electric Generator | N/A | | 14-Jan-22 | Overcast | OP4 | 14:50 | 16.6 | 3.3 | E | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP5 | 14:54 | 16.0 | 3.6 | N | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP6 | 14:57 | 15.9 | 2.5 | N | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP7 | 15:01 | 16.8 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP8 | 15:04 | 16.3 | 2.1 | S | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP9 | 15:07 | 16.6 | 2.5 | S | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP10 | 15:10 | 16.2 | 2.3 | E | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP11 | 15:20 | 15.8 | 1.8 | N | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP1 | 18:04 | 16.4 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP2 | 18:07 | 15.7 | 0.9 | S | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |-----------|----------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|---------| | | | | | (oC) | (m/s) | Direction | Project Site | | Characteristic | | | | 14-Jan-22 | Overcast | OP3 | 18:10 | 15.6 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP4 | 18:13 | 15.3 | 2.5 | E | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP5 | 18:17 | 15.4 | 1.7 | E | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP6 | 18:20 | 15.1 | 1.3 | E | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP7 | 18:24 | 15.1 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP8 | 18:27 | 15.2 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP9 | 18:31 | 14.9 | 3.3 | N | No | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP10 | 18:34 | 15.0 | 1.0 | E | Yes | 0 | N/A | N/A | N/A | | 14-Jan-22 | Overcast | OP11 | 18:44 | 15.4 | 0.7 | N | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP1 | 10:38 | 17.8 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP2 | 10:41 | 17.6 | 1.8 | N | Yes | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP3 | 10:45 | 17.7 | 2.8 | SW | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP4 | 10:48 | 17.6 | 0.9 | W | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP5 | 10:52 | 17.8 | 1.5 | E | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP6 | 10:55 | 17.4 | 2.3 | E | Yes | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP7 | 10:59 | 17.5 | 2.2 | SW | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP8 | 11:04 | 17.6 | 2.5 | N | Yes | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP9 | 11:07 | 17.9 | 2.3 | N | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP10 | 11:10 | 17.8 | 2.7 | N | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP11 | 11:20 | 18.3 | 2.6 | E | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP1 | 14:40 | 19.2 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP2 | 14:43 | 20.0 | 0.7 | S | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP3 | 14:47 | 19.8 | 0.9 | SW | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP4 | 14:50 | 18.8 | 2.1 | E | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP5 | 14:53 | 19.2 | 3.0 | E | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP6 | 14:57 | 19.6 | 1.6 | E | Yes | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP7 | 14:59 | 20.1 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP8 | 15:03 | 20.3 | 1.0 | SE | Yes | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP9 | 15:07 | 20.8 | 0.9 | E | Yes | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP10 | 15:10 | 20.3 | 0.7 | W | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP11 | 15:20 | 19.7 | 2.2 | E | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP1 | 18:05 | 17.3 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP2 | 18:08 | 17.5 | 0.5 | S | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP3 | 18:12 | 17.4 | 1.1 | SE | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP4 | 18:15 | 17.6 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP5 | 18:19 | 17.0 | 2.9 | E | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP6 | 18:22 | 17.1 | 1.5 | N | No | 0 | N/A | N/A | N/A | | 15-Jan-22 | Fine | OP7 | 18:26 | 17.0 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature (oC) | Wind Speed
(m/s) | Wind
Direction | From
Project Site | Odour | Odour
Characteristic | Possible Source | Remarks | |------------------------|--------------|--------------|----------------|------------------|---------------------|-------------------|----------------------|-------|-------------------------|-----------------|------------| | 15-Jan-22 | Fine | OP8 | 18:29 | 16.8 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | 15-Jan-22
15-Jan-22 | Fine
Fine | OP8
OP9 | 18:29
18:33 | 16.8
16.9 | 1.0 | N
N | Yes
No | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | 15-Jan-22
15-Jan-22 | Fine | OP10 | 18:36 | 16.9
17.0 | 0.9 | N
N | No | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | • | Fine | OP10
OP11 | 18:45 | 17.0 | 0.9 | | N/A | | N/A
N/A | N/A
N/A | - | | 15-Jan-22 | | OP11
OP1 | | | | N/A | • | 0 | • | - | N/A | | 16-Jan-22 | Overcast | | 11:00 | 18.8 | 0.9 | N | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Overcast | OP2 | 11:03 | 19.1 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Overcast | OP3 | 11:07 | 18.9 | 2.5 | N | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Overcast | OP4 | 11:10 | 19.5 | 1.9 | E | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Overcast | OP5 | 11:14 | 19.3 | 2.4 | E | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Overcast | OP6 | 11:17 | 19.1 | 2.8 | N | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Overcast | OP7 | 11:21 | 19.7 | 2.3 | N | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Overcast | OP8 | 11:24 | 18.9 | 2.5 | N | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Overcast | OP9 | 11:28 | 18.7 | 2.2 | N | No | 0 | N/A | N/A | N/A | |
16-Jan-22 | Overcast | OP10 | 11:31 | 18.5 | 2.3 | E | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Overcast | OP11 | 11:41 | 19.6 | 0.7 | E | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Sunny | OP1 | 15:18 | 21.7 | 3.2 | S | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Sunny | OP2 | 15:14 | 22.0 | 2.8 | S | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Sunny | OP3 | 15:11 | 21.8 | 1.7 | NW | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Sunny | OP4 | 15:08 | 21.9 | 2.2 | E | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Sunny | OP5 | 15:04 | 22.1 | 3.2 | E | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Sunny | OP6 | 15:01 | 22.3 | 2.8 | S | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Sunny | OP7 | 14:58 | 23.7 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Sunny | OP8 | 14:55 | 23.6 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Sunny | OP9 | 14:52 | 22.7 | 1.6 | N | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Sunny | OP10 | 14:49 | 22.2 | 2.2 | E | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Sunny | OP11 | 14:40 | 23.1 | 1.3 | N | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Fine | OP1 | 18:02 | 18.9 | 0.9 | N | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Fine | OP2 | 18:05 | 18.4 | 1.9 | N | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Fine | OP3 | 18:09 | 18.6 | 0.8 | SW | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Fine | OP4 | 18:12 | 18.4 | 1.9 | W | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Fine | OP5 | 18:15 | 18.5 | 0.9 | N | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Fine | OP6 | 18:19 | 18.6 | 1.1 | E | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Fine | OP7 | 18:22 | 18.0 | 2.0 | N | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Fine | OP8 | 18:26 | 18.3 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 16-Jan-22 | Fine | OP9 | 18:29 | 17.9 | 1.0 | N | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Fine | OP10 | 18:33 | 17.7 | 0.9 | N | No | 0 | N/A | N/A | N/A | | 16-Jan-22 | Fine | OP11 | 18:43 | 17.0 | 0.5 | N | No | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP1 | 10:43 | 18.5 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature (oC) | Wind Speed
(m/s) | Wind
Direction | From
Project Site | Odour
Intensity | Odour
Characteristic | Possible Source | Remarks | |-----------|----------|----------|-------|------------------|---------------------|-------------------|----------------------|--------------------|-------------------------|-------------------|---------| | 17-Jan-22 | Overcast | OP2 | 10:47 | 18.4 | 1.4 | S | No | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP3 | 10:50 | 19.2 | 1.0 | SW | No | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP4 | 10:54 | 18.7 | 2.8 | E | No | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP5 | 10:57 | 19.1 | 2.3 | E | No | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP6 | 11:00 | 18.6 | 3.5 | S | No | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP7 | 11:03 | 19.1 | 1.1 | N | Yes | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP8 | 11:07 | 19.2 | 1.7 | N | Yes | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP9 | 11:11 | 18.8 | 2.8 | S | No | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP10 | 11:15 | 19.3 | 1.2 | S | No | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP11 | 11:25 | 18.7 | 0.7 | E | No | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP1 | 14:30 | 18.7 | 1.5 | N | Yes | 1 | Grassy | Nearby Vegetation | N/A | | 17-Jan-22 | Overcast | OP2 | 14:34 | 19.1 | 0.5 | N | Yes | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP3 | 14:36 | 18.9 | 0.5 | N | Yes | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP4 | 14:39 | 19.0 | 0.8 | NE | Yes | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP5 | 14:42 | 18.4 | 2.0 | E | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Overcast | OP6 | 14:45 | 18.2 | 3.0 | S | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Overcast | OP7 | 14:49 | 18.8 | 0.9 | E | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Overcast | OP8 | 14:52 | 18.8 | 1.0 | SE | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Overcast | OP9 | 14:56 | 19.3 | 1.5 | SW | No | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP10 | 14:59 | 19.5 | 0.9 | NE | Yes | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP11 | 15:08 | 18.9 | 0.7 | SW | Yes | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP1 | 18:10 | 17.6 | 0.7 | W | Yes | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP2 | 18:13 | 17.5 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP3 | 18:16 | 16.3 | 0.7 | N | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Overcast | OP4 | 18:20 | 15.8 | 1.8 | E | No | 0 | N/A | N/A | N/A | | 17-Jan-22 | Overcast | OP5 | 18:24 | 16.5 | 0.6 | E | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Overcast | OP6 | 18:27 | 15.9 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Overcast | OP7 | 18:30 | 15.7 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Overcast | OP8 | 18:34 | 16.4 | 1.6 | N | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Overcast | OP9 | 18:37 | 16.2 | 0.8 | N | No | 0 | N/A | N/A | N/A | | 7-Jan-22 | Overcast | OP10 | 18:40 | 16.4 | 0.8 | E | Yes | 0 | N/A | N/A | N/A | | 7-Jan-22 | Overcast | OP11 | 18:49 | 16.5 | 0.9 | E | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP1 | 10:35 | 18.1 | 1.2 | S | No | 0 | N/A | N/A | N/A | | 18-Jan-22 | Sunny | OP2 | 10:38 | 18.5 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 18-Jan-22 | Sunny | OP3 | 10:42 | 18.4 | 1.1 | SW | No | 0 | N/A | N/A | N/A | | 18-Jan-22 | Sunny | OP4 | 10:45 | 18.7 | 0.4 | W | No | 0 | N/A | N/A | N/A | | 18-Jan-22 | Sunny | OP5 | 10:48 | 18.4 | 2.4 | E | No | 0 | N/A | N/A | N/A | | 8-Jan-22 | Sunny | OP6 | 10:51 | 18.5 | 1.2 | S | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |------------------------|----------|----------|--------|-------------|-------|-----------|--------------|-------|----------------|-------------------|---------| | 10 7 | | 0.05 | 10 = 1 | (oC) | (m/s) | Direction | Project Site | | Characteristic | > / / · | **** | | 18-Jan-22 | Sunny | OP7 | 10:54 | 18.6 | 0.4 | S | No | 0 | N/A | N/A | N/A | | 18-Jan-22 | Sunny | OP8 | 10:57 | 18.2 | 2.6 | N | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Sunny | OP9 | 11:02 | 18.4 | 2.4 | N | No | 0 | N/A | N/A | N/A | | 18-Jan-22 | Sunny | OP10 | 11:05 | 18.6 | 1.7 | NE | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Sunny | OP11 | 11:15 | 18.3 | 1.6 | E | No | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP1 | 14:39 | 18.4 | 1.9 | N | Yes | 1 | Grassy | Nearby Vegetation | N/A | | 18-Jan-22 | Overcast | OP2 | 14:42 | 18.2 | 2.2 | N | Yes | 1 | Grassy | Nearby Vegetation | N/A | | 18-Jan-22 | Overcast | OP3 | 14:45 | 18.7 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP4 | 14:48 | 19.1 | 1.1 | NW | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP5 | 14:52 | 18.9 | 0.5 | N | No | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP6 | 14:54 | 18.5 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP7 | 14:57 | 18.8 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP8 | 15:01 | 18.6 | 0.7 | N | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP9 | 15:04 | 19.0 | 0.6 | N | No | 1 | Decayed grass | Nearby Vegetation | N/A | | 18-Jan-22 | Overcast | OP10 | 15:08 | 19.1 | 0.4 | N | No | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP11 | 15:18 | 18.0 | 2.1 | E | No | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP1 | 18:17 | 17.5 | 1.7 | N | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP2 | 18:20 | 17.7 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP3 | 18:24 | 17.8 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP4 | 18:27 | 17.7 | 0.7 | N | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP5 | 18:30 | 17.6 | 0.9 | N | No | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP6 | 18:34 | 17.4 | 1.8 | N | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP7 | 18:37 | 17.2 | 2.1 | N | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP8 | 18:40 | 17.0 | 2.8 | N | Yes | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP9 | 18:43 | 17.3 | 1.4 | N | No | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP10 | 18:47 | 17.4 | 1.5 | N | No | 0 | N/A | N/A | N/A | | 18-Jan-22 | Overcast | OP11 | 18:56 | 17.5 | 1.6 | SE | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP1 | 10:55 | 19.2 | 1.9 | N | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP2 | 10:58 | 20.1 | 2.2 | N | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP3 | 11:02 | 21.7 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP4 | 11:05 | 21.9 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP5 | 11:08 | 22.6 | 2.5 | N | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP6 | 11:11 | 22.1 | 1.3 | N | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP7 | 11:15 | 21.8 | 2.3 | N | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP8 | 11:19 | 21.6 | 3.5 | N | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP9 | 11:23 | 21.4 | 2.3 | N | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP10 | 11:26 | 21.9 | 0.7 | N | No | 0 | N/A | N/A | N/A | | 19-Jan-22
19-Jan-22 | Sunny | OP11 | 11:35 | 22.3 | 2.2 | E | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |------------------------|---------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|--------------------|----------| | 10 7 | | 0.01 | 4461 | (oC) | (m/s) | Direction | Project Site | | Characteristic | > / / · | . | | 19-Jan-22 | Sunny | OP1 | 14:34 | 24.2 | 1.2 | S | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP2 | 14:37 | 20.2 | 3.1 | S | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP3 | 14:39 | 21.1 | 0.7 | N | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP4 | 14:42 | 19.8 | 3.3 | E | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP5 | 14:47 | 21.4 | 3.6 | E | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP6 | 14:49 | 20.2 | 2.3
 E | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP7 | 14:52 | 21.8 | 0.5 | SE | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP8 | 14:55 | 20.4 | 0.6 | SE | Yes | 1 | Diesel | Generator | N/A | | 19-Jan-22 | Sunny | OP9 | 14:59 | 20.3 | 2.0 | N | No | 1 | Decayed grass | Nearby Vegetation | N/A | | 19-Jan-22 | Sunny | OP10 | 15:07 | 20.8 | 3.0 | E | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Sunny | OP11 | 15:17 | 19.7 | 2.9 | SE | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Fine | OP1 | 18:03 | 20.7 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 19-Jan-22 | Fine | OP2 | 18:06 | 19.7 | 0.1 | S | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Fine | OP3 | 18:10 | 18.6 | 0.4 | NE | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Fine | OP4 | 18:13 | 18.6 | 0.4 | E | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Fine | OP5 | 18:17 | 18.4 | 0.9 | E | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Fine | OP6 | 18:20 | 18.5 | 0.7 | S | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Fine | OP7 | 18:24 | 18.4 | 0.4 | S | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Fine | OP8 | 18:27 | 18.3 | 0.3 | NW | No | 0 | N/A | N/A | N/A | | 19-Jan-22 | Fine | OP9 | 18:31 | 18.2 | 0.5 | NE | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Fine | OP10 | 18:35 | 18.1 | 0.6 | E | Yes | 0 | N/A | N/A | N/A | | 19-Jan-22 | Fine | OP11 | 18:44 | 18.2 | 0.4 | E | No | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP1 | 10:30 | 18.3 | 1.2 | NE | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP2 | 10:33 | 18.1 | 3.1 | S | No | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP3 | 10:37 | 18.5 | 1.7 | W | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP4 | 10:40 | 18.4 | 2.5 | SE | No | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP5 | 10:43 | 18.3 | 4.3 | E | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP6 | 10:47 | 18.7 | 1.5 | N | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP7 | 10:50 | 18.6 | 1.9 | S | No | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP8 | 10:54 | 18.3 | 2.8 | N | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP9 | 10:57 | 18.8 | 1.3 | N | No | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP10 | 11:00 | 18.7 | 2.7 | N | No | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP11 | 11:10 | 18.9 | 1.7 | E | No | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP1 | 14:48 | 21.2 | 1.1 | S | No | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP2 | 14:51 | 20.5 | 1.5 | S | No | 0 | N/A | N/A | N/A | | 20-Jan-22
20-Jan-22 | Sunny | OP3 | 14:55 | 20.2 | 1.9 | SW | No | 1 | Oil | Electric Generator | N/A | | 20-Jan-22
20-Jan-22 | Sunny | OP4 | 14:58 | 20.4 | 1.5 | E | No | 0 | N/A | N/A | N/A | | 20-Jan-22
20-Jan-22 | Sunny | OP5 | 15:02 | 20.4 | 2.2 | E | Yes | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |------------------------|---------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|---------| | | | | | (oC) | (m/s) | Direction | Project Site | | Characteristic | | /. | | 20-Jan-22 | Sunny | OP6 | 15:05 | 20.0 | 1.2 | E | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP7 | 15:08 | 21.2 | 1.1 | S | No | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP8 | 15:11 | 20.6 | 3.3 | SE | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP9 | 15:15 | 21.0 | 0.7 | E | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP10 | 15:18 | 21.7 | 1.0 | E | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Sunny | OP11 | 15:27 | 20.6 | 1.6 | E | No | 0 | N/A | N/A | N/A | | 20-Jan-22 | Fine | OP1 | 18:03 | 18.7 | 0.5 | N | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Fine | OP2 | 18:07 | 18.6 | 0.8 | S | No | 0 | N/A | N/A | N/A | | 20-Jan-22 | Fine | OP3 | 18:11 | 18.8 | 1.2 | SW | No | 0 | N/A | N/A | N/A | | 20-Jan-22 | Fine | OP4 | 18:15 | 18.7 | 1.6 | E | No | 0 | N/A | N/A | N/A | | 20-Jan-22 | Fine | OP5 | 18:18 | 18.9 | 1.5 | E | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Fine | OP6 | 18:21 | 18.6 | 1.3 | NE | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Fine | OP7 | 18:24 | 18.5 | 2.1 | N | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Fine | OP8 | 18:27 | 18.7 | 1.8 | NE | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Fine | OP9 | 18:31 | 18.9 | 1.1 | E | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Fine | OP10 | 18:34 | 18.8 | 1.6 | NE | Yes | 0 | N/A | N/A | N/A | | 20-Jan-22 | Fine | OP11 | 18:44 | 18.7 | 1.4 | E | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Sunny | OP1 | 11:00 | 20.3 | 0.9 | N | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Sunny | OP2 | 11:03 | 20.5 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 21-Jan-22 | Sunny | OP3 | 11:07 | 20.2 | 1.9 | S | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Sunny | OP4 | 11:10 | 19.3 | 2.5 | W | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Sunny | OP5 | 11:14 | 20.2 | 2.7 | E | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Sunny | OP6 | 11:17 | 19.5 | 2.5 | E | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Sunny | OP7 | 11:20 | 20.2 | 2.2 | S | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Sunny | OP8 | 11:24 | 19.4 | 3.0 | E | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Sunny | OP9 | 11:28 | 20.8 | 2.2 | S | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Sunny | OP10 | 11:31 | 20.5 | 2.7 | E | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Sunny | OP11 | 11:41 | 20.8 | 2.5 | E | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP1 | 14:39 | 19.6 | 2.8 | N | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP2 | 14:42 | 20.5 | 1.4 | E | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP3 | 14:45 | 20.8 | 1.9 | SW | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP4 | 14:48 | 20.1 | 1.4 | S | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP5 | 14:51 | 20.7 | 2.2 | E | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP6 | 14:55 | 20.0 | 2.5 | S | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP7 | 14:58 | 20.3 | 2.1 | S | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP8 | 15:02 | 21.3 | 1.2 | E | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22
21-Jan-22 | Fine | OP9 | 15:05 | 21.9 | 1.0 | E | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22
21-Jan-22 | Fine | OP10 | 15:08 | 21.1 | 1.5 | N | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |-----------|----------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|---------| | | | | | (oC) | (m/s) | Direction | Project Site | | Characteristic | **/. | | | 21-Jan-22 | Fine | OP11 | 15:17 | 20.6 | 1.4 | E | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP1 | 18:04 | 17.3 | 4.3 | N | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP2 | 18:07 | 17.8 | 2.3 | N | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP3 | 18:10 | 17.8 | 1.9 | SW | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP4 | 18:14 | 17.6 | 2.8 | W | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP5 | 18:17 | 17.9 | 1.5 | E | No | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP6 | 18:20 | 17.6 | 2.1 | NE | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP7 | 18:23 | 17.6 | 1.4 | NE | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP8 | 18:27 | 17.1 | 4.6 | NE | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP9 | 18:31 | 17.3 | 3.7 | E | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP10 | 18:34 | 17.6 | 1.4 | E | Yes | 0 | N/A | N/A | N/A | | 21-Jan-22 | Fine | OP11 | 18:43 | 17.9 | 0.6 | E | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Shower | OP1 | 10:38 | 17.8 | 2.1 | NW | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Shower | OP2 | 10:42 | 17.5 | 2.5 | SW | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Shower | OP3 | 10:45 | 17.5 | 2.8 | W | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Shower | OP4 | 10:49 | 17.2 | 3.8 | SW | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Shower | OP5 | 10:54 | 17.1 | 3.2 | NE | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Shower | OP6 | 10:59 | 17.5 | 1.5 | N | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Shower | OP7 | 11:02 | 17.8 | 0.6 | NW | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Shower | OP8 | 11:05 | 17.7 | 2.1 | SE | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Shower | OP9 | 11:09 | 17.9 | 0.6 | W | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Shower | OP10 | 11:12 | 17.9 | 1.2 | S | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Shower | OP11 | 11:23 | 18.0 | 0.6 | S | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP1 | 15:00 | 19.1 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP2 | 15:03 | 19.2 | 0.4 | S | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP3 | 15:07 | 19.1 | 0.5 | N | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP4 | 15:10 | 18.7 | 1.3 | W | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP5 | 15:14 | 18.8 | 0.8 | NE | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP6 | 15:17 | 18.2 | 2.9 | N | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP7 | 15:21 | 18.3 | 1.2 | NE | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP8 | 15:24 | 18.1 | 1.9 | S | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP9 | 15:28 | 18.0 | 1.0 | N | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP10 | 15:31 | 17.9 | 1.4 | NE | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP11 | 15:40 | 19.1 | 0.5 | NE | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP1 | 18:00 | 18.8 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP2 | 18:03 | 18.5 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP3 | 18:07 | 18.4 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP4 | 18:10 | 17.9 | 0.6 | SW | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |-----------|----------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|---------| | | | | | (oC) | (m/s) | Direction | Project Site | | Characteristic | ~~/. | | | 22-Jan-22 | Overcast | OP5 | 18:14 | 17.7 | 1.7 | E | No | 0 | N/A | N/A | N/A
| | 22-Jan-22 | Overcast | OP6 | 18:17 | 17.6 | 0.4 | NE | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP7 | 18:21 | 17.5 | 1.4 | S | No | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP8 | 18:25 | 17.6 | 1.1 | SE | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP9 | 18:28 | 17.6 | 1.2 | NE | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP10 | 18:32 | 17.5 | 1.0 | NE | Yes | 0 | N/A | N/A | N/A | | 22-Jan-22 | Overcast | OP11 | 18:41 | 17.1 | 2.9 | E | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP1 | 11:00 | 20.4 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP2 | 11:03 | 21.0 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP3 | 11:07 | 21.5 | 1.0 | S | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP4 | 11:10 | 21.7 | 1.4 | S | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP5 | 11:13 | 21.4 | 1.1 | S | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP6 | 11:16 | 21.9 | 1.3 | W | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP7 | 11:20 | 22.2 | 1.1 | N | Yes | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP8 | 11:24 | 21.9 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP9 | 11:27 | 21.7 | 2.8 | N | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP10 | 11:31 | 22.1 | 2.5 | E | Yes | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP11 | 11:40 | 21.5 | 1.4 | E | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP1 | 14:30 | 21.6 | 1.5 | S | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP2 | 14:33 | 20.9 | 2.3 | S | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP3 | 14:36 | 21.3 | 1.4 | S | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP4 | 14:40 | 21.5 | 1.8 | E | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP5 | 14:43 | 21.2 | 0.7 | N | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP6 | 14:47 | 21.1 | 1.6 | SE | Yes | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP7 | 14:50 | 21.4 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP8 | 14:54 | 22.0 | 2.0 | N | Yes | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP9 | 14:57 | 22.1 | 1.2 | N | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP10 | 15:00 | 22.4 | 1.1 | N | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Overcast | OP11 | 15:11 | 22.9 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 23-Jan-22 | Fine | OP1 | 18:00 | 18.8 | 1.1 | s | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Fine | OP2 | 18:03 | 18.9 | 1.1 | S | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Fine | OP3 | 18:07 | 18.5 | 2.3 | SW | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Fine | OP4 | 18:10 | 18.2 | 3.1 | E | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Fine | OP5 | 18:14 | 18.6 | 0.9 | E | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Fine | OP6 | 18:17 | 18.9 | 0.3 | S | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Fine | OP7 | 18:20 | 18.4 | 1.1 | SW | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Fine | OP8 | 18:24 | 18.8 | 0.4 | SW | No | 0 | N/A | N/A | N/A | | 23-Jan-22 | Fine | OP9 | 18:28 | 18.5 | 0.6 | NE | Yes | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |------------------------|---------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-------------------|---------| | | | | | (oC) | (m/s) | Direction | Project Site | | Characteristic | ~~/. | | | 23-Jan-22 | Fine | OP10 | 18:31 | 18.6 | 0.5 | NE | Yes | 0 | N/A | N/A | N/A | | 23-Jan-22 | Fine | OP11 | 18:42 | 18.7 | 0.6 | E | No | 0 | N/A | N/A | N/A | | 24-Jan-22 | Sunny | OP1 | 11:10 | 23.2 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 24-Jan-22 | Sunny | OP2 | 11:07 | 22.9 | 2.5 | N | Yes | 0 | N/A | N/A | N/A | | 24-Jan-22 | Sunny | OP3 | 11:03 | 23.1 | 0.6 | W | No | 0 | N/A | N/A | N/A | | 24-Jan-22 | Sunny | OP4 | 11:00 | 22.7 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 24-Jan-22 | Sunny | OP5 | 11:16 | 23.8 | 1.8 | E | No | 0 | N/A | N/A | N/A | | 24-Jan-22 | Sunny | OP6 | 11:19 | 23.3 | 2.2 | N | No | 0 | N/A | N/A | N/A | | 24-Jan-22 | Sunny | OP7 | 11:22 | 22.0 | 1.6 | N | Yes | 0 | N/A | N/A | N/A | | 24-Jan-22 | Sunny | OP8 | 11:25 | 23.4 | 3.2 | N | Yes | 0 | N/A | N/A | N/A | | 24-Jan-22 | Sunny | OP9 | 11:29 | 23.0 | 3.1 | N | No | 0 | N/A | N/A | N/A | | 24-Jan-22 | Sunny | OP10 | 11:32 | 23.2 | 1.0 | N | No | 0 | N/A | N/A | N/A | | 24-Jan-22 | Sunny | OP11 | 11:42 | 23.5 | 1.1 | N | No | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP1 | 14:33 | 22.2 | 0.5 | S | No | 1 | Grassy | Nearby Vegetation | N/A | | 24-Jan-22 | Fine | OP2 | 14:37 | 22.3 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP3 | 14:40 | 21.6 | 3.4 | W | W | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP4 | 14:42 | 21.9 | 1.4 | NE | NE | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP5 | 14:46 | 21.8 | 2.6 | E | E | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP6 | 14:49 | 21.1 | 3.7 | SE | SE | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP7 | 14:51 | 22.3 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP8 | 14:55 | 21.4 | 0.7 | N | N | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP9 | 14:58 | 21.7 | 1.8 | N | N | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP10 | 15:01 | 22.1 | 0.7 | N | N | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP11 | 15:11 | 23.4 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP1 | 18:00 | 19.1 | 0.8 | S | No | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP2 | 18:03 | 19.3 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP3 | 18:07 | 19.1 | 1.1 | NE | Yes | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP4 | 18:10 | 19.0 | 1.2 | NE | Yes | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP5 | 18:14 | 18.9 | 3.0 | SE | No | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP6 | 18:17 | 18.7 | 3.4 | N | No | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP7 | 18:20 | 19.1 | 0.7 | SW | No | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP8 | 18:23 | 19.1 | 0.8 | SW | No | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP9 | 18:27 | 18.9 | 1.8 | N | No | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP10 | 18:30 | 19.2 | 0.7 | NE | Yes | 0 | N/A | N/A | N/A | | 24-Jan-22 | Fine | OP11 | 18:41 | 19.2 | 0.6 | E | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP1 | 11:07 | 18.3 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 25-Jan-22
25-Jan-22 | Fine | OP2 | 11:10 | 18.4 | 1.8 | S | No | 0 | N/A | N/A | N/A | | 25-Jan-22
25-Jan-22 | Fine | OP3 | 11:13 | 18.6 | 1.5 | S | No | 0 | N/A | N/A
N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |-----------|----------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-------------------|---------| | A | T1 | 071 | 44.44 | (oC) | (m/s) | Direction | Project Site | | Characteristic | > / / | **** | | 25-Jan-22 | Fine | OP4 | 11:16 | 18.7 | 0.5 | E | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP5 | 11:20 | 18.5 | 3.6 | E | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP6 | 11:23 | 18.3 | 1.8 | E | Yes | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP7 | 11:26 | 18.4 | 0.5 | S | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP8 | 11:30 | 18.7 | 0.6 | E | Yes | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP9 | 11:34 | 18.9 | 1.4 | N | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP10 | 11:37 | 18.6 | 1.6 | E | Yes | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP11 | 11:47 | 18.9 | 0.9 | E | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Sunny | OP1 | 14:33 | 21.9 | 0.7 | SE | No | 1 | Grassy | Nearby Vegetation | N/A | | 25-Jan-22 | Sunny | OP2 | 14:36 | 20.7 | 1.9 | SE | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Sunny | OP3 | 14:39 | 21.2 | 0.8 | NW | Yes | 0 | N/A | N/A | N/A | | 25-Jan-22 | Sunny | OP4 | 14:42 | 21.3 | 0.8 | E | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Sunny | OP5 | 14:45 | 20.6 | 2.0 | E | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Sunny | OP6 | 14:47 | 20.0 | 2.2 | SE | Yes | 0 | N/A | N/A | N/A | | 25-Jan-22 | Sunny | OP7 | 14:50 | 21.9 | 0.8 | SE | Yes | 0 | N/A | N/A | N/A | | 25-Jan-22 | Sunny | OP8 | 14:54 | 20.6 | 1.5 | SW | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Sunny | OP9 | 14:56 | 20.2 | 2.9 | NE | Yes | 0 | N/A | N/A | N/A | | 25-Jan-22 | Sunny | OP10 | 14:59 | 21.9 | 0.4 | N | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Sunny | OP11 | 15:08 | 20.3 | 2.0 | E | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP1 | 18:00 | 19.1 | 1.6 | S | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP2 | 18:03 | 18.7 | 0.6 | S | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP3 | 18:06 | 18.7 | 0.7 | N | Yes | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP4 | 18:09 | 18.4 | 3.7 | E | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP5 | 18:13 | 18.5 | 2.4 | E | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP6 | 18:17 | 18.7 | 1.1 | NE | Yes | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP7 | 18:20 | 18.9 | 0.5 | S | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP8 | 18:24 | 18.9 | 0.8 | E | Yes | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP9 | 18:27 | 18.8 | 0.8 | N | No | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP10 | 18:31 | 18.6 | 2.1 | NE | Yes | 0 | N/A | N/A | N/A | | 25-Jan-22 | Fine | OP11 | 18:41 | 18.9 | 0.1 | S | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Overcast | OP1 | 10:36 | 19.2 | 1.9 | S | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Overcast | OP2 | 10:39 | 19.3 | 1.4 | S | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Overcast | OP3 | 10:42 | 19.1 | 1.3 | W | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Overcast | OP4 | 10:44 | 19.5 | 2.6 | E | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Overcast | OP5 | 10:47 | 19.2 | 3.4 | E | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Overcast | OP6 | 10:49 | 19.2 | 1.4 | NE | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Overcast | OP7 | 10:52 | 20.2 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 26-Jan-22 | Overcast | OP8 | 10:55 | 19.6 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | Date | Weather | Location |
Time | Temperature (oC) | Wind Speed
(m/s) | Wind
Direction | From
Project Site | Odour
Intensity | Odour
Characteristic | Possible Source | Remarks | |-----------|----------|----------|-------|------------------|---------------------|-------------------|----------------------|--------------------|-------------------------|------------------|---------| | 26-Jan-22 | Overcast | OP9 | 10:57 | 19.6 | 2.8 | N | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Overcast | OP10 | 11:00 | 19.9 | 1.6 | E | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Overcast | OP11 | 11:08 | 19.7 | 3.2 | SE | No | 1 | Vehicle Exhaust | Heavy Vehicles | N/A | | 26-Jan-22 | Fine | OP1 | 14:45 | 22.1 | 0.9 | NW | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP2 | 14:48 | 22.7 | 0.4 | N | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP3 | 14:52 | 22.7 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP4 | 14:55 | 22.4 | 1.1 | SW | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP5 | 14:58 | 22.2 | 3.3 | E | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP6 | 15:02 | 22.6 | 1.0 | S | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP7 | 15:05 | 22.8 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP8 | 15:09 | 22.1 | 2.6 | NW | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP9 | 15:13 | 22.4 | 2.2 | N | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP10 | 15:17 | 22.3 | 1.2 | NE | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP11 | 15:28 | 22.5 | 0.9 | NE | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP1 | 18:00 | 19.7 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP2 | 18:04 | 19.6 | 0.7 | S | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP3 | 18:07 | 19.7 | 0.5 | N | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP4 | 18:11 | 19.6 | 0.5 | N | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP5 | 18:14 | 19.4 | 0.4 | E | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP6 | 18:17 | 19.3 | 0.8 | NE | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP7 | 18:21 | 19.1 | 0.7 | NW | No | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP8 | 18:25 | 18.9 | 1.5 | N | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP9 | 18:28 | 19.0 | 1.2 | NE | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP10 | 18:31 | 18.9 | 1.9 | NE | Yes | 0 | N/A | N/A | N/A | | 26-Jan-22 | Fine | OP11 | 18:41 | 19.1 | 1.3 | E | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Overcast | OP1 | 10:30 | 19.2 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Overcast | OP2 | 10:33 | 19.0 | 2.3 | N | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Overcast | OP3 | 10:36 | 19.3 | 0.7 | N | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Overcast | OP4 | 10:39 | 19.2 | 1.5 | E | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Overcast | OP5 | 10:43 | 19.5 | 0.5 | E | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Overcast | OP6 | 10:47 | 19.4 | 1.5 | N | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Overcast | OP7 | 10:50 | 19.6 | 0.4 | N | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Overcast | OP8 | 10:53 | 19.5 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Overcast | OP9 | 10:57 | 19.2 | 2.1 | N | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Overcast | OP10 | 11:01 | 19.7 | 0.5 | N | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Overcast | OP11 | 11:10 | 19.6 | 1.7 | SE | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Sunny | OP1 | 14:45 | 20.9 | 3.6 | S | No | 1 | Dead Body | ,
Wild Animal | N/A | | 27-Jan-22 | Sunny | OP2 | 14:48 | 21.7 | 0.9 | S | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |-----------|---------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|------------| | | | 0.00 | | (oC) | (m/s) | Direction | Project Site | | Characteristic | 27/4 | 27/4 | | 27-Jan-22 | Sunny | OP3 | 14:51 | 21.6 | 1.4 | SW | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Sunny | OP4 | 14:55 | 21.8 | 1.8 | W | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Sunny | OP5 | 14:58 | 22.1 | 1.7 | S | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Sunny | OP6 | 15:01 | 22.3 | 0.6 | E | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Sunny | OP7 | 15:04 | 22.2 | 1.5 | SW | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Sunny | OP8 | 15:08 | 22.3 | 1.2 | SE | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Sunny | OP9 | 15:11 | 22.1 | 1.9 | SE | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Sunny | OP10 | 15:14 | 22.1 | 2.2 | E | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Sunny | OP11 | 15:23 | 21.9 | 2.0 | E | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Fine | OP1 | 18:05 | 19.1 | 0.5 | S | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Fine | OP2 | 18:08 | 19.0 | 0.6 | S | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Fine | OP3 | 18:11 | 19.1 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Fine | OP4 | 18:15 | 18.9 | 1.1 | E | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Fine | OP5 | 18:18 | 19.0 | 0.9 | NE | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Fine | OP6 | 18:21 | 19.1 | 0.7 | N | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Fine | OP7 | 18:25 | 19.1 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Fine | OP8 | 18:28 | 18.9 | 0.9 | N | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Fine | OP9 | 18:31 | 19.1 | 0.4 | NW | No | 0 | N/A | N/A | N/A | | 27-Jan-22 | Fine | OP10 | 18:34 | 19.0 | 1.2 | E | Yes | 0 | N/A | N/A | N/A | | 27-Jan-22 | Fine | OP11 | 18:42 | 19.0 | 0.3 | NE | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Shower | OP1 | 10:45 | 18.8 | 2.9 | N | Yes | 1 | Dead Body | Boar | N/A | | 28-Jan-22 | Shower | OP2 | 10:48 | 19.1 | 0.7 | N | Yes | 0 | N/A | N/A | N/A | | 28-Jan-22 | Shower | OP3 | 10:51 | 18.8 | 2.4 | W | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Shower | OP4 | 10:54 | 19.0 | 0.5 | SW | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Shower | OP5 | 10:58 | 19.2 | 1.0 | E | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Shower | OP6 | 11:01 | 18.7 | 3.9 | NE | Yes | 0 | N/A | N/A | N/A | | 28-Jan-22 | Shower | OP7 | 11:04 | 19.2 | 2.1 | N | Yes | 0 | N/A | N/A | N/A | | 28-Jan-22 | Shower | OP8 | 11:07 | 19.0 | 1.3 | S | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Shower | OP9 | 11:10 | 18.9 | 2.7 | E | Yes | 0 | N/A | N/A | N/A | | 28-Jan-22 | Shower | OP10 | 11:13 | 18.9 | 3.3 | SE | Yes | 0 | N/A | N/A | N/A | | 28-Jan-22 | Shower | OP11 | 11:23 | 19.3 | 0.7 | SE | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP1 | 14:45 | 18.9 | 1.9 | N | Yes | 1 | Dead Body | Boar | N/A | | 28-Jan-22 | Fine | OP2 | 14:48 | 19.0 | 2.0 | N | Yes | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP3 | 14:51 | 18.8 | 2.7 | SW | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP4 | 14:54 | 18.9 | 1.8 | SW | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP5 | 14.54 | 18.7 | 3.2 | E | No | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | 28-Jan-22 | Fine | OP6 | 15:01 | 18.9 | 1.2 | NW | No | 0 | N/A | N/A
N/A | N/A | | 28-Jan-22 | Fine | OP7 | 15:04 | 19.0 | 1.1 | W | No | 0 | N/A | N/A
N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |-----------|----------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|---------| | | | | | (oC) | (m/s) | Direction | Project Site | | Characteristic | ~~/. | | | 28-Jan-22 | Fine | OP8 | 15:07 | 19.1 | 1.3 | SW | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP9 | 15:11 | 18.9 | 2.4 | SE | Yes | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP10 | 15:15 | 19.2 | 1.5 | NW | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP11 | 15:25 | 19.1 | 1.8 | W | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP1 | 18:00 | 19.2 | 0.4 | N | Yes | 1 | Dead Body | Boar | N/A | | 28-Jan-22 | Fine | OP2 | 18:03 | 18.8 | 1.1 | NW | Yes | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP3 | 18:07 | 18.8 | 2.4 | NW | Yes | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP4 | 18:10 | 18.2 | 4.3 | E | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP5 | 18:14 | 18.3 | 3.1 | SE | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP6 | 18:17 | 18.3 | 2.0 | S | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP7 | 18:20 | 18.5 | 1.9 | N | Yes | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP8 | 18:23 | 18.4 | 1.6 | S | No | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP9 | 18:27 | 18.4 | 1.7 | NE | Yes | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP10 | 18:30 | 19.0 | 0.4 | E | Yes | 0 | N/A | N/A | N/A | | 28-Jan-22 | Fine | OP11 | 18:41 | 18.8 | 2.5 | E | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Overcast | OP1 | 10:38 | 18.7 | 1.1 | N | Yes | 0 | N/A | N/A | N/A | | 29-Jan-22 | Overcast | OP2 | 10:41 | 18.5 | 2.0 | N | Yes | 0 | N/A | N/A | N/A | | 29-Jan-22 | Overcast | OP3 | 10:45 | 18.8 | 0.5 | SE | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Overcast | OP4 | 10:48 | 18.5 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 29-Jan-22 | Overcast | OP5 | 10:52 | 18.6 | 2.9 | E | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Overcast | OP6 | 10:55 | 18.4 | 1.2 | N | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Overcast | OP7 | 10:58 | 18.5 | 1.1 | N | Yes | 0 | N/A | N/A | N/A | | 29-Jan-22 | Overcast | OP8 | 11:02 | 18.7 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 29-Jan-22 | Overcast | OP9 | 11:06 | 19.0 | 0.6 | N | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Overcast | OP10 | 11:09 | 18.9 | 1.5 | E | Yes | 0 | N/A | N/A | N/A | | 29-Jan-22 | Overcast | OP11 | 11:20 | 19.1 | 0.4 | E | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Sunny | OP1 | 15:00 | 22.2 | 1.1 | S | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Sunny | OP2 | 15:03 | 22.1 | 5.1 | S | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Sunny | OP3 | 15:07 | 22.3 | 0.7 | SW | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Sunny | OP4 | 15:11 | 22.1 | 2.5 | E | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Sunny | OP5 | 15:14 | 22.7 | 0.6 | E | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Sunny | OP6 | 15:17 | 22.5 | 1.6 | SE | Yes | 0 | N/A | N/A | N/A | | 29-Jan-22 | Sunny | OP7 | 15:21 | 23.0 | 0.5 | S | No | 0 | N/A | N/A |
N/A | | 29-Jan-22 | Sunny | OP8 | 15:25 | 22.9 | 1.8 | NW | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Sunny | OP9 | 15:28 | 21.9 | 1.6 | N | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Sunny | OP10 | 15:31 | 21.6 | 2.1 | NE | Yes | 0 | N/A | N/A | N/A | | 29-Jan-22 | Sunny | OP11 | 15:41 | 20.8 | 2.7 | NE | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Fine | OP1 | 18:00 | 19.7 | 0.3 | S | No | 0 | N/A | N/A | N/A | | | | | | Temperature | _ | Direction | From
Project Site | Odour | Odour
Characteristic | Possible Source | Remarks | |------------------------|-------|------------|-------|-------------|-------|-----------|----------------------|-------|-------------------------|-----------------|------------| | 20 T 22 | T. | ODO | 10.00 | (oC) | (m/s) | | , | | | NT / A | D.T. / A | | 29-Jan-22 | Fine | OP2 | 18:03 | 19.3 | 1.1 | S | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Fine | OP3 | 18:06 | 19.1 | 0.5 | NE | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Fine | OP4 | 18:10 | 19.0 | 1.1 | E | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Fine | OP5 | 18:14 | 18.9 | 1.9 | E | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Fine | OP6 | 18:17 | 19.4 | 0.6 | SE | Yes | 0 | N/A | N/A | N/A | | 29-Jan-22 | Fine | OP7 | 18:21 | 19.3 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 29-Jan-22 | Fine | OP8 | 18:24 | 19.2 | 0.7 | E | Yes | 0 | N/A | N/A | N/A | | 29-Jan-22 | Fine | OP9 | 18:28 | 19.0 | 1.5 | N | No | 0 | N/A | N/A | N/A | | 29-Jan-22 | Fine | OP10 | 18:31 | 19.3 | 1.2 | E | Yes | 0 | N/A | N/A | N/A | | 29-Jan-22 | Fine | OP11 | 18:42 | 19.2 | 0.1 | E | No | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP1 | 10:30 | 14.6 | 2.4 | N | Yes | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP2 | 10:33 | 14.4 | 3.8 | N | Yes | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP3 | 10:36 | 14.7 | 1.4 | NE | No | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP4 | 10:40 | 14.6 | 1.8 | NE | Yes | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP5 | 10:43 | 14.5 | 3.4 | NE | Yes | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP6 | 10:46 | 14.8 | 1.7 | N | No | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP7 | 10:50 | 14.7 | 2.6 | N | Yes | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP8 | 10:53 | 14.9 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP9 | 10:57 | 15.0 | 1.6 | N | No | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP10 | 11:00 | 15.1 | 1.3 | N | No | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP11 | 11:10 | 15.3 | 3.2 | S | Yes | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP1 | 15:11 | 18.5 | 3.0 | N | Yes | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP2 | 15:07 | 18.7 | 2.5 | N | Yes | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP3 | 15:03 | 18.9 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP4 | 15:00 | 19.0 | 0.6 | W | No | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP5 | 14:57 | 18.8 | 3.2 | E | No | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP6 | 14:54 | 18.7 | 2.7 | N | No | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP7 | 14:50 | 18.6 | 3.2 | N | Yes | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP8 | 14:47 | 18.4 | 2.8 | N | Yes | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP9 | 14:43 | 18.7 | 2.6 | N | No | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP10 | 14:40 | 18.5 | 1.4 | N | No | 0 | N/A | N/A | N/A | | 30-Jan-22 | Sunny | OP11 | 14:30 | 18.9 | 1.7 | S | No | 0 | N/A | N/A | N/A | | 30-Jan-22 | Fine | OP1 | 18:00 | 16.7 | 2.0 | N | Yes | 0 | N/A | N/A
N/A | N/A | | 30-Jan-22
30-Jan-22 | Fine | OP2 | 18:03 | 16.7 | 2.4 | N | Yes | 0 | N/A | N/A
N/A | N/A
N/A | | 30-Jan-22 | Fine | OP2
OP3 | 18:06 | 16.7 | 1.1 | NE | No | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | - | | OP3
OP4 | | 16.8 | 0.9 | NE
E | | | • | | | | 30-Jan-22 | Fine | | 18:10 | | | | No | 0 | N/A | N/A | N/A | | 30-Jan-22 | Fine | OP5 | 18:13 | 16.6 | 1.3 | NE | Yes | 0 | N/A | N/A | N/A | | 30-Jan-22 | Fine | OP6 | 18:17 | 16.3 | 2.4 | NE | Yes | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature
(oC) | Wind Speed
(m/s) | Wind
Direction | From
Project Site | Odour | Odour
Characteristic | Possible Source | Remarks | |------------------------|--------------|--------------|-------|---------------------|---------------------|-------------------|----------------------|-------|-------------------------|---------------------------------------|------------| | 30-Jan-22 | Fine | OP7 | 18:20 | 16.0 | 2.0 | N | Yes | | N/A | N/A | N/A | | 30-jan-22
30-jan-22 | Fine
Fine | OP7
OP8 | 18:24 | 15.9 | 2.0
1.7 | N
NW | res
No | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | 30-jan-22
30-jan-22 | Fine | OP9 | 18:28 | 16.0 | 0.6 | N | No | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | • | Fine | OP10 | 18:31 | 15.9 | 1.3 | NE
NE | Yes | | N/A
N/A | N/A
N/A | • | | 30-Jan-22 | | OP10
OP11 | | | | | res
No | 0 | • | · · · · · · · · · · · · · · · · · · · | N/A | | 30-Jan-22 | Fine | | 18:42 | 15.6 | 1.1 | E | | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP1 | 11:05 | 12.1 | 2.6 | N | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP2 | 11:08 | 12.4 | 3.5 | N | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP3 | 11:11 | 12.3 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP4 | 11:14 | 12.3 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP5 | 11:17 | 12.5 | 1.7 | N | No | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP6 | 11:20 | 12.2 | 2.2 | N | No | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP7 | 11:24 | 12.0 | 3.0 | N | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP8 | 11:27 | 12.3 | 2.6 | N | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP9 | 11:30 | 12.4 | 3.4 | N | No | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP10 | 11:33 | 12.5 | 2.2 | N | No | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP11 | 11:44 | 12.4 | 1.5 | E | No | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP1 | 15:11 | 14.5 | 2.1 | N | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP2 | 15:14 | 14.7 | 2.4 | NW | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP3 | 15:16 | 15.2 | 0.5 | W | No | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP4 | 15:19 | 14.6 | 1.3 | E | No | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP5 | 15:22 | 14.2 | 1.6 | SE | No | 1 | Cooking Smell | EPD Office Building | N/A | | 31-Jan-22 | Fine | OP6 | 15:25 | 15.4 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP7 | 15:28 | 14.5 | 2.2 | N | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP8 | 15:31 | 14.3 | 0.8 | NE | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP9 | 15:34 | 14.5 | 1.8 | E | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP10 | 15:36 | 14.9 | 0.6 | SE | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP11 | 15:45 | 14.2 | 1.1 | SE | No | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP1 | 18:00 | 13.8 | 2.4 | N | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP2 | 18:03 | 14.1 | 2.1 | N | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP3 | 18:07 | 14.2 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP4 | 18:10 | 14.2 | 2.0 | N | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP5 | 18:14 | 14.0 | 2.1 | NE | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP6 | 18:18 | 14.4 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP7 | 18:21 | 14.6 | 2.2 | É | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP8 | 18:25 | 14.0 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP9 | 18:28 | 14.2 | 0.8 | N | No | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP10 | 18:31 | 14.3 | 0.6 | N | No | 0 | N/A | N/A | N/A | | 31-Jan-22 | Fine | OP11 | 18:42 | 14.0 | 1.4 | E | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | - | | From | Odour | Odour | Possible Source | Remarks | |----------------------|----------------------|------------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|------------| | | T- | 0.01 | 10.55 | (oC) | (m/s) | Direction | Project Site | | Characteristic | > 7 / A | 27/4 | | 1-Feb-22 | Fine | OP1 | 10:55 | 14.9 | 2.0 | N | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP2 | 10:58 | 14.6 | 1.8 | N | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP3 | 11:01 | 14.5 | 2.3 | N | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP4 | 11:04 | 14.5 | 2.4 | W | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP5 | 11:08 | 15.1 | 0.7 | N | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP6 | 11:11 | 14.9 | 0.9 | N | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP7 | 11:15 | 15.2 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP8 | 11:19 | 15.4 | 2.2 | N | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP9 | 11:23 | 14.6 | 2.7 | N | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP10 | 11:27 | 14.0 | 1.5 | N | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP11 | 11:38 | 13.8 | 2.9 | E | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Overcast | OP1 | 15:47 | 13.5 | 1.8 | N | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Overcast | OP2 | 15:44 | 14.7 | 0.4 | W | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Overcast | OP3 | 15:39 | 14.5 | 0.8 | NW | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Overcast | OP4 | 15:35 | 14.3 | N/A | N/A | N/A | 0 | N/A | N/A | N/A | | 1-Feb-22 | Overcast | OP5 | 15:32 | 14.2 | 1.4 | N | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Overcast | OP6 | 15:28 | 13.7 | 2.2 | N | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Overcast | OP7 | 15:24 | 13.5 | 2.1 | N | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Overcast | OP8 | 15:20 | 13.4 | 1.8 | N | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Overcast | OP9 | 15:17 | 13.5 | 1.7 | N | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Overcast | OP10 | 15:14 | 13.7 | 2.2 | N | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Overcast | OP11 | 15:04 | 14.0 | N/A | N/A | N/A | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP1 | 18:00 | 14.0 | 1.1 | N | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP2 | 18:04 | 13.9 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine |
OP3 | 18:07 | 13.6 | 0.9 | N | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP4 | 18:10 | 13.4 | 0.6 | S | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP5 | 18:14 | 12.8 | 0.8 | N | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP6 | 18:17 | 12.3 | 2.1 | N | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP7 | 18:21 | 12.2 | 2.6 | N | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP8 | 18:24 | 11.7 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP9 | 18:27 | 11.9 | 1.2 | N | No | 0 | N/A | N/A | N/A | | 1-Feb-22 | Fine | OP10 | 18:31 | 11.7 | 1.3 | N | No | 0 | N/A | N/A | N/A | | l-Feb-22 | Fine | OP11 | 18:42 | 11.5 | 1.8 | E | No | 0 | N/A | N/A | N/A | | 1-Feb-22
2-Feb-22 | Overcast | OP1 | 10:42 | 15.3 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22
2-Feb-22 | Overcast | OP2 | 10:43 | 15.4 | 0.7 | NW | Yes | 0 | N/A | N/A
N/A | N/A | | | Overcast | OP2
OP3 | 10:48 | 15.4 | 1.0 | N | Yes | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | 2-Feb-22 | | OP3
OP4 | 10:51 | 15.5 | 1.0 | SW | No | 0 | N/A
N/A | N/A
N/A | | | 2-Feb-22
2-Feb-22 | Overcast
Overcast | OP4
OP5 | 10:54 | 15.2 | 3.1 | E
E | No
No | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | Date | Weather | Location | Time | Temperature | - | | From | Odour | Odour | Possible Source | Remarks | |----------|----------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|---------| | | | | | (oC) | (m/s) | Direction | Project Site | | Characteristic | | | | 2-Feb-22 | Overcast | OP6 | 11:01 | 15.1 | 1.4 | SW | No | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP7 | 11:05 | 15.0 | 2.1 | N | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP8 | 11:08 | 15.2 | 0.7 | SW | No | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP9 | 11:12 | 15.0 | 0.8 | NW | No | 1 | Acidic | Town Gas Plant | N/A | | 2-Feb-22 | Overcast | OP10 | 11:15 | 14.9 | 1.3 | NE | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP11 | 11:26 | 15.3 | 0.9 | SW | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP1 | 14:55 | 16.8 | 1.1 | NW | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP2 | 14:58 | 16.6 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP3 | 15:02 | 16.7 | 0.5 | NE | No | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP4 | 15:05 | 16.8 | 0.9 | N | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP5 | 15:09 | 16.4 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP6 | 15:12 | 16.9 | 0.5 | N | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP7 | 15:16 | 17.0 | 0.1 | N | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP8 | 15:19 | 16.6 | 1.5 | NE | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP9 | 15:23 | 16.5 | 0.6 | NW | No | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP10 | 15:26 | 16.9 | 0.3 | NW | No | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP11 | 15:36 | 16.1 | 1.4 | NE | No | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP1 | 18:00 | 14.6 | 0.9 | N | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP2 | 18:03 | 14.2 | 1.5 | N | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP3 | 18:06 | 14.1 | 1.2 | NE | No | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP4 | 18:10 | 14.8 | 0.5 | E | No | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP5 | 18:13 | 14.6 | 0.7 | E | No | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP6 | 18:16 | 14.3 | 1.6 | N | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP7 | 18:20 | 13.9 | 1.0 | NE | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP8 | 18:24 | 14.1 | 2.1 | N | Yes | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP9 | 18:27 | 14.2 | 1.4 | N | No | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP10 | 18:30 | 14.6 | 0.8 | N | No | 0 | N/A | N/A | N/A | | 2-Feb-22 | Overcast | OP11 | 18:41 | 14.1 | 0.9 | NE | No | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP1 | 10:30 | 13.5 | 2.1 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP2 | 10:33 | 13.6 | 2.0 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP3 | 10:37 | 13.6 | 2.1 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP4 | 10:40 | 13.8 | 1.1 | NE | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP5 | 10:43 | 14.0 | 1.2 | E | No | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP6 | 10:47 | 13.9 | 1.6 | E | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP7 | 10:50 | 14.1 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP8 | 10:53 | 13.7 | 2.0 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP9 | 10:57 | 13.7 | 0.6 | N | No | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP10 | 11:00 | 13.8 | 0.4 | N | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |----------------------|----------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|---------| | | | 0.014 | | (oC) | (m/s) | Direction | Project Site | | Characteristic | > 7 / A | 27/1 | | 3-Feb-22 | Overcast | OP11 | 11:11 | 13.5 | 3.0 | E | No | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP1 | 15:44 | 14.0 | 3.2 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP2 | 15:41 | 14.1 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP3 | 15:37 | 13.9 | 2.7 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP4 | 15:34 | 14.2 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP5 | 15:30 | 14.5 | 2.1 | N | No | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP6 | 15:27 | 14.0 | 3.0 | NW | No | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP7 | 15:24 | 14.2 | 2.1 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP8 | 15:20 | 14.6 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP9 | 15:17 | 14.5 | 0.7 | NE | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP10 | 15:14 | 14.6 | 0.8 | NE | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP11 | 15:03 | 14.3 | 3.0 | E | No | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP1 | 18:00 | 14.2 | 0.6 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP2 | 18:02 | 14.3 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP3 | 18:06 | 13.9 | 0.5 | NE | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP4 | 18:10 | 13.7 | 0.9 | NE | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP5 | 18:14 | 14.0 | 1.2 | N | No | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP6 | 18:17 | 14.1 | 1.1 | NE | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP7 | 18:19 | 13.9 | 0.9 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP8 | 18:22 | 13.8 | 2.0 | N | Yes | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP9 | 18:26 | 13.9 | 1.3 | N | No | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP10 | 18:29 | 14.2 | 1.4 | N | No | 0 | N/A | N/A | N/A | | 3-Feb-22 | Overcast | OP11 | 18:42 | 13.7 | 2.0 | E | No | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP1 | 10:33 | 14.3 | 2.1 | NE | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP2 | 10:36 | 14.0 | 2.1 | NE | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP3 | 10:38 | 14.3 | 1.9 | NE | No | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP4 | 10:40 | 15.1 | 1.0 | E | No | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP5 | 10:43 | 14.6 | 2.0 | NE | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP6 | 10:45 | 14.5 | 3.2 | NE | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP7 | 10:48 | 14.3 | 3.6 | NE | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP8 | 10:50 | 14.4 | 2.7 | NE | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP9 | 10:52 | 14.9 | 0.8 | NE | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP10 | 10:54 | 15.1 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP11 | 11:02 | 14.6 | 2.2 | SE | No | 0 | N/A | N/A | N/A | | 4-Feb-22 | Sunny | OP1 | 14:48 | 17.3 | 3.2 | N | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Sunny | OP2 | 14:51 | 17.6 | 1.4 | N | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22
4-Feb-22 | Sunny | OP3 | 14:54 | 17.2 | 1.7 | W | No | 0 | N/A | N/A | N/A | | 4-Feb-22
4-Feb-22 | Sunny | OP4 | 14:57 | 17.5 | 1.7 | E | No | 0 | N/A | N/A
N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | | From | Odour | Odour | Possible Source | Remarks | |-----------|----------|----------|-------|-------------|-------|-----------|--------------|-------|----------------|-----------------|---------| | | | ODE | 45.01 | (oC) | (m/s) | Direction | Project Site | | Characteristic | NT / A | NT / A | | 4-Feb-22 | Sunny | OP5 | 15:01 | 18.1 | 2.2 | N | No | 0 | N/A | N/A | N/A | | 4-Feb-22 | Sunny | OP6 | 15:05 | 18.3 | 2.9 | N | No | 0 | N/A | N/A | N/A | | 4-Feb-22 | Sunny | OP7 | 15:09 | 18.5 | 2.4 | N | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Sunny | OP8 | 15:13 | 18.4 | 2.3 | N | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Sunny | OP9 | 15:17 | 18.1 | 2.1 | N | No | 0 | N/A | N/A | N/A | | 4-Feb-22 | Sunny | OP10 | 15:20 | 18.6 | 0.9 | N | No | 0 | N/A | N/A | N/A | | 4-Feb-22 | Sunny | OP11 | 15:30 | 18.8 | 1.8 | E | No | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP1 | 18:00 | 15.3 | 3.3 | N | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP2 | 18:03 | 15.6 | 1.7 | N | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP3 | 18:06 | 14.9 | 0.5 | NW | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP4 | 18:10 | 14.8 | 1.4 | E | No | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP5 | 18:14 | 14.4 | 2.9 | NE | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP6 | 18:17 | 14.3 | 1.8 | N | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP7 | 18:21 | 14.2 | 1.6 | NE | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP8 | 18:25 | 14.5 | 1.7 | N | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP9 | 18:29 | 14.6 | 1.4 | NE | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP10 | 18:32 | 14.8 | 1.0 | NE | Yes | 0 | N/A | N/A | N/A | | 4-Feb-22 | Fine | OP11 | 18:43 | 14.1 | 2.7 | E | No | 0 | N/A | N/A
 N/A | | 11-Feb-22 | Overcast | OP1 | 14:55 | 20.2 | 1.9 | NW | Yes | 0 | N/A | N/A | N/A | | 11-Feb-22 | Overcast | OP2 | 14:58 | 20.8 | 2.0 | NW | Yes | 0 | N/A | N/A | N/A | | 11-Feb-22 | Overcast | OP3 | 15:00 | 20.1 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | 11-Feb-22 | Overcast | OP4 | 15:02 | 20.3 | 2.2 | NE | Yes | 0 | N/A | N/A | N/A | | 11-Feb-22 | Overcast | OP5 | 15:04 | 19.5 | 3.2 | E | No | 0 | N/A | N/A | N/A | | 11-Feb-22 | Overcast | OP6 | 15:06 | 20.3 | 3.4 | NW | No | 0 | N/A | N/A | N/A | | 11-Feb-22 | Overcast | OP7 | 15:09 | 20.3 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 11-Feb-22 | Overcast | OP8 | 15:11 | 19.8 | 2.0 | N | Yes | 0 | N/A | N/A | N/A | | 11-Feb-22 | Overcast | OP9 | 15:13 | 20.8 | N/A | N/A | N/A | 0 | N/A | N/A | N/A | | 11-Feb-22 | Overcast | OP10 | 15:16 | 21.2 | 0.8 | NE | Yes | 0 | N/A | N/A | N/A | | 11-Feb-22 | Overcast | OP11 | 15:24 | 19.7 | 3.0 | SE | No | 1 | Exhaust gas | Generator | N/A | | 18-Feb-22 | Overcast | OP1 | 14:28 | 16.7 | 4.3 | SE | No | 0 | N/A | N/A | N/A | | 18-Feb-22 | Overcast | OP2 | 14:31 | 16.1 | 3.0 | SE | No | 0 | N/A | N/A | N/A | | 18-Feb-22 | Overcast | OP3 | 14:33 | 15.8 | 9.0 | N | Yes | 0 | N/A | N/A | N/A | | 18-Feb-22 | Overcast | OP4 | 14:36 | 16.1 | 2.0 | N | Yes | 0 | N/A | N/A | N/A | | 18-Feb-22 | Overcast | OP5 | 14:38 | 16.2 | 8.8 | E | No | 0 | N/A | N/A | N/A | | 18-Feb-22 | Overcast | OP6 | 14:41 | 16.5 | 4.7 | N | No | 0 | N/A | N/A | N/A | | 18-Feb-22 | Overcast | OP7 | 14:44 | 16.7 | 5.6 | NW | No | 0 | N/A | N/A | N/A | | 18-Feb-22 | Overcast | OP8 | 14:46 | 16.8 | 1.0 | E | Yes | 0 | N/A | N/A | N/A | | 18-Feb-22 | Overcast | OP9 | 14:49 | 16.2 | 10.1 | N | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | _ | Wind
Direction | From
Project Site | Odour | Odour
Characteristic | Possible Source | Remarks | |------------|----------|--------------|----------------|--------------|--------------|-------------------|----------------------|-------|-------------------------|-----------------|------------| | 10 F.1. 22 | Orranasi | OP10 | 14:51 | (oC)
17.9 | (m/s)
1.2 | N | , | | | N/A | NI / A | | 18-Feb-22 | Overcast | OP10
OP11 | 14:51
14:59 | 17.9
17.8 | 0.7 | N
E | No
No | 0 | N/A
N/A | N/A
N/A | N/A
N/A | | 18-Feb-22 | Overcast | | | | | e
NW | Yes | | • | - | | | 21-Feb-22 | Rainy | OP1 | 14:44 | 8.7 | 1.3 | | | 0 | N/A | N/A | N/A | | 21-Feb-22 | Rainy | OP2 | 14:48 | 8.9 | 1.8 | NW | Yes | 0 | N/A | N/A | N/A | | 21-Feb-22 | Rainy | OP3 | 14:51 | 9.2 | 0.8 | NE | No | 0 | N/A | N/A | N/A | | 21-Feb-22 | Rainy | OP4 | 14:53 | 10.6 | N/A | N/A | N/A | 0 | N/A | N/A | N/A | | 21-Feb-22 | Rainy | OP5 | 14:56 | 9.9 | 1.0 | NW | Yes | 0 | N/A | N/A | N/A | | 21-Feb-22 | Rainy | OP6 | 14:58 | 9.9 | 2.0 | NW | Yes | 0 | N/A | N/A | N/A | | 21-Feb-22 | Rainy | OP7 | 15:00 | 9.8 | 1.2 | N | Yes | 0 | N/A | N/A | N/A | | 21-Feb-22 | Rainy | OP8 | 15:03 | 9.8 | 1.4 | N | No | 0 | N/A | N/A | N/A | | 21-Feb-22 | Rainy | OP9 | 15:06 | 9.8 | 1.2 | N | No | 0 | N/A | N/A | N/A | | 21-Feb-22 | Rainy | OP10 | 15:13 | 9.7 | 1.4 | N | No | 0 | N/A | N/A | N/A | | 21-Feb-22 | Rainy | OP11 | 15:20 | 9.6 | 0.8 | SE | No | 0 | N/A | N/A | N/A | | 28-Feb-22 | Sunny | OP1 | 13:43 | 23.3 | 3.9 | N | Yes | 0 | N/A | N/A | N/A | | 28-Feb-22 | Sunny | OP2 | 13:46 | 20.4 | 9.6 | N | Yes | 0 | N/A | N/A | N/A | | 28-Feb-22 | Sunny | OP3 | 13:49 | 22.3 | 0.9 | N | Yes | 0 | N/A | N/A | N/A | | 28-Feb-22 | Sunny | OP4 | 13:52 | 22.8 | 11.7 | NE | Yes | 0 | N/A | N/A | N/A | | 28-Feb-22 | Sunny | OP5 | 13:55 | 20.1 | 6.2 | E | Yes | 0 | N/A | N/A | N/A | | 28-Feb-22 | Sunny | OP6 | 13:59 | 21.8 | 2.3 | NW | Yes | 0 | N/A | N/A | N/A | | 28-Feb-22 | Sunny | OP7 | 14:03 | 21.0 | 4.2 | NW | No | 0 | N/A | N/A | N/A | | 28-Feb-22 | Sunny | OP8 | 14:07 | 21.7 | 3.1 | NW | No | 0 | N/A | N/A | N/A | | 28-Feb-22 | Sunny | OP9 | 14:10 | 23.2 | 3.8 | NE | No | 0 | N/A | N/A | N/A | | 28-Feb-22 | Sunny | OP10 | 14:13 | 24.2 | 4.0 | NE | Yes | 0 | N/A | N/A | N/A | | 28-Feb-22 | Sunny | OP11 | 14:24 | 21.4 | 2.9 | NE | No | 0 | N/A | N/A | N/A | | 7-Mar-22 | Fine | OP1 | 11:20 | 22.4 | 2.5 | NW | Yes | 0 | N/A | N/A | N/A | | 7-Mar-22 | Fine | OP2 | 11:23 | 22.4 | 2.4 | NW | Yes | 0 | N/A | N/A | N/A | | 7-Mar-22 | Fine | OP3 | 11:25 | 23.7 | 1.0 | NE | No | 0 | N/A | N/A | N/A | | 7-Mar-22 | Fine | OP4 | 11:27 | 24.3 | 1.0 | E | No | 0 | N/A | N/A | N/A | | 7-Mar-22 | Fine | OP5 | 11:30 | 23.5 | 3.0 | E | No | 0 | N/A | N/A | N/A | | 7-Mar-22 | Fine | OP6 | 11:32 | 23.8 | 0.8 | NW | No | 0 | N/A | N/A | N/A | | 7-Mar-22 | Fine | OP7 | 11:34 | 23.1 | 2.1 | N | Yes | 0 | N/A | N/A | N/A | | 7-Mar-22 | Fine | OP8 | 11:40 | 24.0 | 1.3 | N | No | 0 | N/A | N/A | N/A | | 7-Mar-22 | Fine | OP9 | 11:44 | 23.5 | 1.8 | N | No | 0 | N/A | N/A | N/A | | 7-Mar-22 | Fine | OP10 | 11:46 | 23.1 | 2.3 | N | No | 0 | N/A | N/A | N/A | | 7-Mar-22 | Fine | OP11 | 11:55 | 23.1 | 1.1 | SE | No | 0 | N/A | N/A | N/A | | 16-Mar-22 | Sunny | OP1 | 13:26 | 24.6 | 6.5 | S | No | 0 | N/A | N/A | N/A | | 16-Mar-22 | Sunny | OP2 | 13:30 | 24.9 | 1.8 | S | No | 0 | N/A | N/A | N/A | | 16-Mar-22 | Sunny | OP3 | 13:33 | 26.1 | 1.6 | S | No | 0 | N/A | N/A | N/A | | Date | Weather | Location | Time | Temperature | Wind Speed | Wind | From | Odour | Odour | Possible Source | Remarks | |-----------|----------|----------|-------|-------------|------------|-----------|---------------------|-----------|----------------|-----------------|---------| | | | | | (oC) | (m/s) | Direction | Project Site | Intensity | Characteristic | | | | 16-Mar-22 | Sunny | OP4 | 13:35 | 25.4 | 1.5 | W | No | 0 | N/A | N/A | N/A | | 16-Mar-22 | Sunny | OP5 | 13:39 | 24.8 | 2.9 | E | No | 0 | N/A | N/A | N/A | | 16-Mar-22 | Sunny | OP6 | 13:41 | 24.8 | 3.2 | N | Yes | 0 | N/A | N/A | N/A | | 16-Mar-22 | Sunny | OP7 | 13:45 | 24.7 | 0.0 | N/A | N/A | 1 | Acidic | Slurry Truck | N/A | | 16-Mar-22 | Sunny | OP8 | 13:50 | 23.8 | 7.1 | N | No | 0 | N/A | N/A | N/A | | 16-Mar-22 | Sunny | OP9 | 13:54 | 25.0 | 2.6 | E | Yes | 0 | N/A | N/A | N/A | | 16-Mar-22 | Sunny | OP10 | 13:56 | 23.8 | 3.2 | N | No | 0 | N/A | N/A | N/A | | 16-Mar-22 | Sunny | OP11 | 14:06 | 26.6 | 0.0 | N/A | N/A | 0 | N/A | N/A | N/A | | 21-Mar-22 | Overcast | OP1 | 13:39 | 23.0 | 2.4 | N | Yes | 0 | N/A | N/A | N/A | | 21-Mar-22 | Overcast | OP2 | 13:41 | 22.8 | 2.1 | N | Yes | 0 | N/A | N/A | N/A | | 21-Mar-22 | Overcast | OP3 | 13:44 | 23.1 | 1.6 | W | No | 0 | N/A | N/A | N/A | | 21-Mar-22 | Overcast | OP4 | 13:46 | 23.3 | 0.8 | N | Yes | 0 | N/A | N/A | N/A | | 21-Mar-22 | Overcast | OP5 | 13:49 | 22.4 | 2.0 | NW | No | 0 | N/A | N/A | N/A | | 21-Mar-22 | Overcast | OP6 | 13:51 | 22.4 | 2.2 | N | Yes | 0 | N/A | N/A | N/A | | 21-Mar-22 | Overcast | OP7 | 13:53 | 22.3 | 1.0 | N | Yes | 0 | N/A | N/A | N/A | | 21-Mar-22 | Overcast | OP8 | 13:56 | 22.4 | 2.8 | N | No | 0 | N/A | N/A | N/A | | 21-Mar-22 | Overcast | OP9 | 13:59 | 22.3 | 1.5 | E | Yes | 0 | N/A | N/A | N/A | | 21-Mar-22 | Overcast | OP10 | 14:02 | 22.6 | 1.8 | NE | Yes | 0 | N/A | N/A | N/A | | 21-Mar-22 | Overcast | OP11 | 14:10 | 22.3 | 0.8 | SE | No | 0 | N/A | N/A | N/A | | 29-Mar-22 | Fine | OP1 | 13:27 | 22.3 | 4.7 | N | Yes | 0 | N/A | N/A | N/A | | 29-Mar-22 | Fine | OP2 | 13:31 | 22.5 | 2.0 | S | No | 0 | N/A | N/A | N/A | | 29-Mar-22 | Fine | OP3 | 13:34 | 23.5 | 5.0 | SW | No | 0 | N/A | N/A | N/A | | 29-Mar-22 | Fine | OP4 | 13:37 | 21.2 | 3.7 | E | No | 0 | N/A | N/A | N/A | | 29-Mar-22 | Fine | OP5 | 13:40 | 21.6 | 4.9 | E | No | 0 | N/A | N/A | N/A | | 29-Mar-22 | Fine | OP6 | 13:42 | 21.2 | 5.4 | E | Yes | 0 | N/A | N/A | N/A | | 29-Mar-22 | Fine | OP7 | 13:44 | 21.5 | 1.3 | N | Yes | 0 | N/A | N/A | N/A | | 29-Mar-22 | Fine | OP8 | 13:48 | 22.7 | 6.2 | N | No | 1 | Diesel | Generator | N/A | | 29-Mar-22 | Fine | OP9 | 13:53 | 22.3 | 8.3 | E | Yes | 0 | N/A | N/A | N/A | | 29-Mar-22 | Fine | OP10 | 13:55 | 22.6 | 5.9 | N | No | 0 | N/A | N/A | N/A | | 29-Mar-22 | Fine | OP11 | 14:04 | 21.1 | 3.8 | E | No | 1 | Exhaust Gas | Excavator | N/A | #### Annex D5 Thermal Oxidizer, Landfill Gas Flare and Landfill Gas Generator Stack Emission Monitoring Results Table D5.1 Thermal Oxidiser Stack Emission Monitoring Results | NO2 0.38 gs ⁻¹ CO 0.047 gs ⁻¹ SO2 <0.015 gs ⁻¹ Benzene <4 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <3 x 10 ⁻⁵ gs ⁻¹ Exhaust gas velocity 9.9 ms ⁻¹ Parameters Monitoring Results (February 2022) NO2 1.17 gs ⁻¹ CO 0.06 gs ⁻¹ SO2 0.02 gs ⁻¹ Benzene <3 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <3 x 10 ⁻⁵ gs ⁻¹ Non-methane Organic Carbons 3.6 x 10 ⁻³ gs ⁻¹ Ammonia 6.52 x 10 ⁻² gs ⁻¹ Exhaust gas velocity 9.9 ms ⁻¹ Parameters Monitoring Results (March 2022) NO2 1.54 gs ⁻¹ CO 0.04 gs ⁻¹ SO2 <0.01 gs ⁻¹ Benzene <3 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <2 x 10 ⁻⁵ gs ⁻¹ | Parameters | Monitoring Results (January 2022) | |---|-----------------------------|---------------------------------------| | SO2 <0.015 gs ⁻¹ Benzene <4 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <3 x 10 ⁻⁵ gs ⁻¹ Exhaust gas
velocity 9.9 ms ⁻¹ Parameters Monitoring Results (February 2022) NO2 1.17 gs ⁻¹ CO 0.06 gs ⁻¹ SO2 0.02 gs ⁻¹ Benzene <3 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <3 x 10 ⁻⁵ gs ⁻¹ Non-methane Organic Carbons 3.6 x 10 ⁻³ gs ⁻¹ Ammonia 6.52 x 10 ⁻² gs ⁻¹ Exhaust gas velocity 9.9 ms ⁻¹ Parameters Monitoring Results (March 2022) NO2 1.54 gs ⁻¹ CO 0.04 gs ⁻¹ SO2 <0.01 gs ⁻¹ Benzene <3 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <2 x 10 ⁻⁵ gs ⁻¹ | NO ₂ | 0.38 gs ⁻¹ | | Benzene $<4 \times 10^{-5} gs^{-1}$ Vinyl chloride $<3 \times 10^{-5} gs^{-1}$ Exhaust gas velocity $9.9 ms^{-1}$ Parameters Monitoring Results (February 2022) NO2 $1.17 gs^{-1}$ CO $0.06 gs^{-1}$ SO2 $0.02 gs^{-1}$ Benzene $<3 \times 10^{-5} gs^{-1}$ Vinyl chloride $<3 \times 10^{-5} gs^{-1}$ Non-methane Organic Carbons $3.6 \times 10^{-3} gs^{-1}$ Ammonia $6.52 \times 10^{-2} gs^{-1}$ Exhaust gas velocity $9.9 ms^{-1}$ Parameters Monitoring Results (March 2022) NO2 $1.54 gs^{-1}$ CO $0.04 gs^{-1}$ SO2 $<0.01 gs^{-1}$ Benzene $<3 \times 10^{-5} gs^{-1}$ Vinyl chloride $<2 \times 10^{-5} gs^{-1}$ | CO | $0.047~{ m gs}^{-1}$ | | Vinyl chloride <3 x 10 ⁻⁵ gs ⁻¹ Exhaust gas velocity 9.9 ms ⁻¹ Parameters Monitoring Results (February 2022) NO2 1.17 gs ⁻¹ CO 0.06 gs ⁻¹ SO2 0.02 gs ⁻¹ Benzene <3 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <3 x 10 ⁻⁵ gs ⁻¹ Non-methane Organic Carbons 3.6 x 10 ⁻³ gs ⁻¹ Ammonia 6.52 x 10 ⁻² gs ⁻¹ Exhaust gas velocity 9.9 ms ⁻¹ Parameters Monitoring Results (March 2022) NO2 1.54 gs ⁻¹ CO 0.04 gs ⁻¹ SO2 <0.01 gs ⁻¹ Benzene <3 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <2 x 10 ⁻⁵ gs ⁻¹ | SO_2 | <0.015 gs ⁻¹ | | Exhaust gas velocity 9.9 ms ⁻¹ Parameters Monitoring Results (February 2022) NO2 1.17 gs ⁻¹ CO 0.06 gs ⁻¹ SO2 0.02 gs ⁻¹ Benzene <3 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <3 x 10 ⁻⁵ gs ⁻¹ Non-methane Organic Carbons 3.6 x 10 ⁻³ gs ⁻¹ Ammonia 6.52 x 10 ⁻² gs ⁻¹ Exhaust gas velocity 9.9 ms ⁻¹ Parameters Monitoring Results (March 2022) NO2 1.54 gs ⁻¹ CO 0.04 gs ⁻¹ SO2 <0.01 gs ⁻¹ Benzene <3 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <2 x 10 ⁻⁵ gs ⁻¹ | Benzene | $4 \times 10^{-5} \text{ gs}^{-1}$ | | Parameters Monitoring Results (February 2022) NO2 1.17 gs ⁻¹ CO 0.06 gs ⁻¹ SO2 0.02 gs ⁻¹ Benzene <3 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <3 x 10 ⁻⁵ gs ⁻¹ Non-methane Organic Carbons 3.6 x 10 ⁻³ gs ⁻¹ Ammonia 6.52 x 10 ⁻² gs ⁻¹ Exhaust gas velocity 9.9 ms ⁻¹ Parameters Monitoring Results (March 2022) NO2 1.54 gs ⁻¹ CO 0.04 gs ⁻¹ SO2 <0.01 gs ⁻¹ Benzene <3 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <2 x 10 ⁻⁵ gs ⁻¹ | Vinyl chloride | $<3 \times 10^{-5} \text{ gs}^{-1}$ | | NO2 1.17 gs ⁻¹ CO 0.06 gs ⁻¹ SO2 0.02 gs ⁻¹ Benzene <3 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <3 x 10 ⁻⁵ gs ⁻¹ Non-methane Organic Carbons 3.6 x 10 ⁻³ gs ⁻¹ Ammonia 6.52 x 10 ⁻² gs ⁻¹ Exhaust gas velocity 9.9 ms ⁻¹ Parameters Monitoring Results (March 2022) NO2 1.54 gs ⁻¹ CO 0.04 gs ⁻¹ SO2 <0.01 gs ⁻¹ Benzene <3 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <2 x 10 ⁻⁵ gs ⁻¹ | Exhaust gas velocity | 9.9 ms ⁻¹ | | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | Parameters | Monitoring Results (February 2022) | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | NO_2 | 1.17 gs ⁻¹ | | Benzene $<3 \times 10^{-5} \text{ gs}^{-1}$ Vinyl chloride $<3 \times 10^{-5} \text{ gs}^{-1}$ Non-methane Organic Carbons $3.6 \times 10^{-3} \text{ gs}^{-1}$ Ammonia $6.52 \times 10^{-2} \text{ gs}^{-1}$ Exhaust gas velocity 9.9 ms^{-1} Parameters Monitoring Results (March 2022) NO2 1.54 gs^{-1} CO 0.04 gs^{-1} SO2 $<0.01 \text{ gs}^{-1}$ Benzene $<3 \times 10^{-5} \text{ gs}^{-1}$ Vinyl chloride $<2 \times 10^{-5} \text{ gs}^{-1}$ | CO | 0.06 gs ⁻¹ | | Vinyl chloride $<3 \times 10^{-5} \text{ gs}^{-1}$ Non-methane Organic Carbons $3.6 \times 10^{-3} \text{ gs}^{-1}$ Ammonia $6.52 \times 10^{-2} \text{ gs}^{-1}$ Exhaust gas velocity 9.9 ms^{-1} Parameters Monitoring Results (March 2022) NO2 1.54 gs^{-1} CO 0.04 gs^{-1} SO2 $<0.01 \text{ gs}^{-1}$ Benzene $<3 \times 10^{-5} \text{ gs}^{-1}$ Vinyl chloride $<2 \times 10^{-5} \text{ gs}^{-1}$ | SO_2 | $0.02~{ m gs}^{-1}$ | | Non-methane Organic Carbons $3.6 \times 10^{-3} \text{ gs}^{-1}$ Ammonia $6.52 \times 10^{-2} \text{ gs}^{-1}$ Exhaust gas velocity 9.9 ms^{-1} Parameters Monitoring Results (March 2022) NO2 1.54 gs^{-1} CO 0.04 gs^{-1} SO2 $<0.01 \text{ gs}^{-1}$ Benzene $<3 \times 10^{-5} \text{ gs}^{-1}$ Vinyl chloride $<2 \times 10^{-5} \text{ gs}^{-1}$ | Benzene | $<3 \times 10^{-5} \text{ gs}^{-1}$ | | Ammonia $6.52 \times 10^{-2} \text{gs}^{-1}$ Exhaust gas velocity 9.9ms^{-1} Parameters Monitoring Results (March 2022) NO2 1.54gs^{-1} CO 0.04gs^{-1} SO2 $< 0.01 \text{gs}^{-1}$ Benzene $< 3 \times 10^{-5} \text{gs}^{-1}$ Vinyl chloride $< 2 \times 10^{-5} \text{gs}^{-1}$ | Vinyl chloride | $<3 \times 10^{-5} \text{ gs}^{-1}$ | | Exhaust gas velocity 9.9 ms^{-1} Parameters Monitoring Results (March 2022) NO2 1.54 gs^{-1} CO 0.04 gs^{-1} SO2 $<0.01 \text{ gs}^{-1}$ Benzene $<3 \times 10^{-5} \text{ gs}^{-1}$ Vinyl chloride $<2 \times 10^{-5} \text{ gs}^{-1}$ | Non-methane Organic Carbons | $3.6 \times 10^{-3} \text{ gs}^{-1}$ | | Parameters Monitoring Results (March 2022) NO2 1.54 gs^{-1} CO 0.04 gs^{-1} SO2 $<0.01 \text{ gs}^{-1}$ Benzene $<3 \times 10^{-5} \text{ gs}^{-1}$ Vinyl chloride $<2 \times 10^{-5} \text{ gs}^{-1}$ | Ammonia | $6.52 \times 10^{-2} \text{ gs}^{-1}$ | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Exhaust gas velocity | 9.9 ms ⁻¹ | | CO 0.04 gs ⁻¹ SO ₂ <0.01 gs ⁻¹ Benzene <3 x 10 ⁻⁵ gs ⁻¹ Vinyl chloride <2 x 10 ⁻⁵ gs ⁻¹ | Parameters | Monitoring Results (March 2022) | | SO_2 <0.01 gs ⁻¹ Benzene <3 x 10^{-5} gs ⁻¹ Vinyl chloride <2 x 10^{-5} gs ⁻¹ | NO_2 | 1.54 gs ⁻¹ | | Benzene $<3 \times 10^{-5} \text{ gs}^{-1}$
Vinyl chloride $<2 \times 10^{-5} \text{ gs}^{-1}$ | CO | $0.04~{ m gs}^{-1}$ | | Vinyl chloride <2 x 10 ⁻⁵ gs ⁻¹ | SO_2 | <0.01 gs ⁻¹ | | · | Benzene | $<3 \times 10^{-5} \text{ gs}^{-1}$ | | Enhaust and valority 0.1 mod | Vinyl chloride | $<2 \times 10^{-5} \text{ gs}^{-1}$ | | Extraust gas velocity 9.1 ms ⁻¹ | Exhaust gas velocity | 9.1 ms ⁻¹ | Table D5.2 Thermal Oxidiser Stack Continuous Monitoring Results | Date | Gas Combustion | Exhaust temperature | Exhaust gas velocity | |-----------|------------------|---------------------|----------------------| | | Temperature (°C) | (K) | (ms^{-1}) (a) | | 01 Jan 22 | 983 | 1246 | | | 02 Jan 22 | 963 | 1236 | | | 03 Jan 22 | 975 | 1231 | | | 04 Jan 22 | 971 | 1234 | | | 05 Jan 22 | 971 | 1242 | | | 06 Jan 22 | 974 | 1243 | | | 07 Jan 22 | 993 | 1265 | | | 08 Jan 22 | 982 | 1242 | | | 09 Jan 22 | 964 | 1235 | | | 10 Jan 22 | 973 | 1232 | | | 11 Jan 22 | 966 | 1230 | | | 12 Jan 22 | 966 | 1223 | | | 13 Jan 22 | 952 | 1226 | | | 14 Jan 22 | 987 | 1241 | | | 15 Jan 22 | 959 | 1223 | | | 16 Jan 22 | 963 | 1223 | 9.9 | | 17 Jan 22 | 975 | 1243 | | | 18 Jan 22 | 968 | 1233 | | | 19 Jan 22 | 956 | 1218 | | | 20 Jan 22 | 979 | 1244 | | | 21 Jan 22 | 968 | 1241 | | | 22 Jan 22 | 975 | 1241 | | | 23 Jan 22 | 970 | 1247 | | | Date | Gas Combustion
Temperature (°C) | Exhaust temperature (K) | Exhaust gas velocity
(ms ⁻¹) ^(a) | |-----------|------------------------------------|-------------------------|--| | 24 Jan 22 | 987 | 1235 | | | 25 Jan 22 | 971 | 1232 | | | 26 Jan 22 | 994 | 1264 | | | 27 Jan 22 | 967 | 1232 | | | 28 Jan 22 | 975 | 1242 | | | 29 Jan 22 | 968 | 1230 | | | 30 Jan 22 | 973 | 1236 | | | 31 Jan 22 | 968 | 1234 | | | 01 Feb 22 | _ (b) | _ (b) | | | 02 Feb 22 | - (b) | - (b) | | | 03 Feb 22 | 963 | 1221 | | | 04 Feb 22 | 976 | 1232 | | | 05 Feb 22 | 970 | 1227 | | | 06 Feb 22 | 984 | 1234 | | | 07 Feb 22 | 968 | 1231 | | | 08 Feb 22 | 970 | 1236 | | | 09 Feb 22 | 969 | 1228 | | | 10 Feb 22 | 977 | 1239 | | | 11 Feb 22 | 972 | 1232 | | | 12 Feb 22 | 984 | 1241 | | | 13 Feb 22 | 965 | 1231 | | | | | | | | 14 Feb 22 | 972 | 1220 | 9.9 | | 15 Feb 22 | 969 | 1234 | | | 16 Feb 22 | 966 | 1234 | | | 17 Feb 22 | 975 | 1238 | | | 18 Feb 22 | 975 | 1235 | | | 19 Feb 22 | 969 | 1230 | | | 20 Feb 22 | 958 | 1222 | | | 21 Feb 22 | 975 | 1225 | | | 22 Feb 22 | 963 | 1229 | | | 23 Feb 22 | 980 | 1221 | | | 24 Feb 22 | 964 | 1227 | | | 25 Feb 22 | 976 | 1239 | | | 26 Feb 22 | 981 | 1233 | | | 27 Feb 22 | 964 | 1226 | | | 28 Feb 22 | 1013 | 1219 | | | 1 Mar 22 | 970 | 1230 | | | 2 Mar 22 | 971 | 1221 | | | 3 Mar 22 | 983 | 1244 | | | 4 Mar 22 | 969 | 1223 | | | 5 Mar 22 | 975 | 1234 | | | 6 Mar 22 | 964 | 1219 | | | 7 Mar 22 | 1015 | 1222 | | | 8 Mar 22 | 983 | 1230 | | | 9 Mar 22 | 974 | 1231 | | | 10 Mar 22 | 972 | 1221 | | | 11 Mar 22 | 969 | 1235 | 9.1 | | 12 Mar 22 | 979 | 1237 | | | 13 Mar 22 | 959 | 1223 | | | 14 Mar 22 | 981 | 1232 | | | 15 Mar 22 | 993 | 1248 | | | 16 Mar 22 | 978 | 1227 | | | 17 Mar 22 | 971 | 1232 | | | 18 Mar 22 | 978 | 1233 | | | 19 Mar 22 | 974 | 1228 | | | 20 Mar 22 | 968 | 1222 | | | 21 Mar 22 | 967 | 1225 | | | Date | | Gas Combustion | Exhaust temperature | Exhaust gas velocity | |-----------|-----------------|-------------------|----------------------------|----------------------| | | | Temperature (°C) | (K) | $(ms^{-1})^{(a)}$ | | 22 Mar 22 | | 1028 | 1276 | | | 23 Mar 22 | | Under maintenance | | | | 24 Mar 22 | | 1035 | 1246 | | | 25 Mar 22 | | 962 | 1214 | | | 26 Mar 22 | | 967 | 1217 | | | 27 Mar 22 | | 960 | 1218 | | | 28 Mar 22 | | 984 | 1236 | | | 29 Mar 22 | | 982 | 1223 | | | 30 Mar 22 | | 977 | 1234 | | | 31 Mar 22 | | 967 | 1228 | | | | Average | 975 | 1233 | 9.6 | | | Min | 952 | 1214 | 9.1 | | | Max 1035 | | 1276 | 9.9 | #### Notes: Table D5.3 Landfill Gas Flare Stack Emission Monitoring Results | Parameters | Monitoring Results (January 20 | 022) | |-----------------------------|--|--| | | Flare 1 - F601 | Flare 2 - F602 | | NO ₂ | <0.01 gs ⁻¹ | <0.01 gs ⁻¹ |
 CO | 0.032 gs ⁻¹ | 0.04 gs ⁻¹ | | SO ₂ | 0.09 gs ⁻¹ | $0.10~{ m gs^{-1}}$ | | Benzene | $1.3 \times 10^{-5} \text{ gs}^{-1}$ | $1.6 \times 10^{-5} \mathrm{gs^{-1}}$ | | Vinyl chloride | <1.1 x 10 ⁻⁵ gs ⁻¹ | <1.3 x 10 ⁻⁵ gs ⁻¹ | | Exhaust gas velocity | 4.3 ms ⁻¹ | 2.0 ms ⁻¹ | | Parameters | Monitoring Results (February | 2022) (Flare 1 – F601) | | NO ₂ | <0.01 gs ⁻¹ | | | CO | 0.027 gs ⁻¹ | | | SO ₂ | 0.110 gs ⁻¹ | | | Benzene | $5.1 \times 10^{-5} \text{ gs}^{-1}$ | | | Vinyl chloride | <1.1 x 10 ⁻⁵ gs ⁻¹ | | | Non-methane Organic Carbons | 4.1 x 10 ⁻³ gs ⁻¹ | | | Exhaust gas velocity | 4.4 ms ⁻¹ | | | Parameters | Monitoring Results (March 202 | 22) (Flare 2 – F602) | | NO ₂ | 0.02 gs ⁻¹ | | | CO | 0.056 gs ⁻¹ | | | SO ₂ | 0.007 gs ⁻¹ | | | Benzene | <1.2 x 10 ⁻⁵ gs ⁻¹ | | | Vinyl chloride | $< 1 \times 10^{-5} \text{ gs}^{-1}$ | | | Exhaust gas velocity | 3.9 ms ⁻¹ | | ⁽a) The exhaust gas velocity was calculated based on the cross-section area of the stack and the gas flow and combustion temperature data measured during the stack emission monitoring. ⁽b) Stack emission monitoring was suspended on 1 and 2 Feb 2022 as the thermal oxidiser was not in operation. Table D5.4 Landfill Gas Flare Stack Continuous Monitoring Results | Date | Gas Combustion
Temperature (°C) | Exhaust temperature (K) | Exhaust gas
velocity (ms-1) (a) | Operation Status | |------------------------|------------------------------------|-------------------------|------------------------------------|-------------------------| | Flare 1 - F6 | <u> </u> | ` ' | velocity (iiis -) (") | | | 01 Jan 22 | - | _ | | Standby | | 02 Jan 22 | - | - | | Standby | | 03 Jan 22 | 1072 | 1115 | | In Operation | | 04 Jan 22 | 907 | 1143 | | In Operation | | 05 Jan 22 | 920 | 1133 | | In Operation | | 06 Jan 22 | 931 | 1163 | | In Operation | | 07 Jan 22 | 891 | 1023 | | In Operation | | 08 Jan 22 | 929 | 1143 | | In Operation | | 09 Jan 22 | - | - | | Standby | | 10 Jan 22 | 1077 | 1183 | | In Operation | | 11 Jan 22 | - | - | | Standby | | 12 Jan 22 | 854 | 1028 | | In Operation | | 13 Jan 22 | 1156 | 1184 | | In Operation | | 14 Jan 22 | 968 | 1133 | | In Operation | | 15 Jan 22 | 999 | 1133 | | In Operation | | 16 Jan 22 | 1051 | 1133 | 4.3 | In Operation | | 17 Jan 22 | 1171 | 1133 | | In Operation | | 18 Jan 22 | - | - | | Standby | | 19 Jan 22 | 1076 | 1189 | | In Operation | | 20 Jan 22 | - | - | | Standby | | 21 Jan 22 | 1064 | 1223 | | In Operation | | 22 Jan 22 | 1037 | 1163 | | In Operation | | 23 Jan 22 | 1087 | 1163 | | In Operation | | 24 Jan 22 | 992 | 1123 | | In Operation | | 25 Jan 22 | 1015 | 1223 | | In Operation | | 26 Jan 22 | - | - | | Standby | | 27 Jan 22 | _ | _ | | Standby | | 28 Jan 22 | _ | _ | | Standby | | 29 Jan 22 | _ | _ | | Standby | | 30 Jan 22 | _ | _ | | Standby | | 31 Jan 22 | - | _ | | Standby | | 01 Feb 22 | - | - | | Standby | | 02 Feb 22 | _ | _ | | Standby | | 03 Feb 22 | _ | _ | | Standby | | 04 Feb 22 | | _ | | Standby | |)5 Feb 22 | - | _ | | Standby | | 06 Feb 22 | _ | _ | | Standby | | 07 Feb 22 | - | - | | Standby | | 07 Feb 22
08 Feb 22 | - | - | | Standby | | 09 Feb 22 | 995 | 1213 | | In Operation | | 10 Feb 22 | - | 1213 | | Standby | | 10 Feb 22
11 Feb 22 | - | - | | Standby | | 12 Feb 22 | 930 | 1181 | | • | | 12 Feb 22
13 Feb 22 | 930
- | - | | In Operation
Standby | | 13 Feb 22
14 Feb 22 | 816 | 1083 | 4.4 | In Operation | | | | 1003 | 4. 4 | Standby | | 15 Feb 22
16 Feb 22 | - | - | | • | | | - | - | | Standby | | 17 Feb 22 | - | - | | Standby | | 18 Feb 22 | - | - | | Standby | | 19 Feb 22 | - | - | | Standby | | 20 Feb 22 | - | 1002 | | Standby | | 21 Feb 22 | 832 | 1093 | | In Operation | | 22 Feb 22 | - | - | | Standby | | 23 Feb 22 | - | - | | Standby | | 24 Feb 22 | - | - | | Standby | ENVIRONMENTAL RESOURCES MANAGEMENT GREEN VALLEY LANDFILL LTD. | Date | Gas Combustion | Exhaust temperature | Exhaust gas | Operation Status | |---------------|--------------------------|----------------------------|---------------------|------------------| | | Temperature (°C) | (K) | velocity (ms-1) (a) | | | 25 Feb 22 | - | - | | Standby | | 26 Feb 22 | - | - | | Standby | | 27 Feb 22 | - | - | | Standby | | 28 Feb 22 | - | - | - | Standby | | 1 Mar 22 | - | - | | Standby | | 2 Mar 22 | - | - | | Standby | | 3 Mar 22 | - | - | | Standby | | 4 Mar 22 | 986 | 1181 | | In operation | | 5 Mar 22 | - | - | | Standby | | 6 Mar 22 | - | - | | Standby | | 7 Mar 22 | - | - | | Standby | | 8 Mar 22 | - | - | | Standby | | 9 Mar 22 | 880 | 1133 | | In operation | | 10 Mar 22 | - | - | | Standby | | 11 Mar 22 | - | _ | | Standby | | 12 Mar 22 | - | - | | Standby | | 13 Mar 22 | - | _ | | Standby | | 14 Mar 22 | _ | - | | Standby | | 15 Mar 22 | _ | - | | Standby | | 16 Mar 22 | - | - | 3.9 | Standby | | 17 Mar 22 | _ | - | | Standby | | 18 Mar 22 | _ | _ | | Standby | | 19 Mar 22 | - | _ | | Standby | | 20 Mar 22 | - | _ | | Standby | | 21 Mar 22 | _ | _ | | Standby | | 22 Mar 22 | _ | _ | | Standby | | 23 Mar 22 | _ | _ | | Standby | | 24 Mar 22 | _ | _ | | Standby | | 25 Mar 22 | _ | _ | | Standby | | 26 Mar 22 | 990 | 1223 | | In operation | | 27 Mar 22 | 830 | 1093 | | In operation | | 28 Mar 22 | 880 | 1113 | | In operation | | 29 Mar 22 | 860 | 1073 | | In operation | | 30 Mar 22 | - | - | | Standby | | 31 Mar 22 | 950 | 1173 | | In operation | | Average | | 1143 | | пторегиногг | | Min | | 1023 | 3.9 | | | | 1171 | 1223 | 4.4 | | | Flare 2 - F60 | 2 | | | | | 01 Jan 22 | 824 | 1058 | | In Operation | | 02 Jan 22 | 820 | 1060 | | In Operation | | 03 Jan 22 | 822 | 1061 | | In Operation | | 04 Jan 22 | 827 | 1071 | | In Operation | | 05 Jan 22 | 824 | 1049 | | In Operation | | 06 Jan 22 | 826 | 1069 | | In Operation | | 07 Jan 22 | 828 | 1069 | | In Operation | | 08 Jan 22 | 826 | 1074 | | In Operation | | 09 Jan 22 | 1082 | 1226 | | In Operation | | 10 Jan 22 | 908 | 1119 | | In Operation | | 11 Jan 22 | 970 | 1148 | | In Operation | | 12 Jan 22 | 905 | 1102 | | In Operation | | 13 Jan 22 | 923 | 1062 | | In Operation | | 14 Jan 22 | 904 | 1093 | | In Operation | | 15 Jan 22 | 1171 | 1099 | | In Operation | | 16 Jan 22 | 877 | 1283 | 2.0 | In Operation | | 17 Jan 22 | 874 | 1061 | | In Operation | | 18 Jan 22 | 872 | 1067 | | In Operation | | 19 Jan 22 | 873 | 1060 | | In Operation | | 17 Juli 22 | 070 | 1000 | | ль орегиноп | | Date | Gas Combustion | Exhaust temperature | Exhaust gas | Operation Status | |-----------|--------------------------|----------------------------|---------------------|------------------------| | | Temperature (°C) | (K) | velocity (ms-1) (a) | | | 20 Jan 22 | 843 | 1045 | | In Operation | | 21 Jan 22 | 900 | 1120 | | In Operation | | 22 Jan 22 | 873 | 1096 | | In Operation | | 23 Jan 22 | 1080 | 1241 | | In Operation | | 24 Jan 22 | 933 | 1204 | | In Operation | | 25 Jan 22 | 905 | 1132 | | In Operation | | 26 Jan 22 | 965 | 1142 | | In Operation | | 27 Jan 22 | 997 | 1120 | | In Operation | | 28 Jan 22 | 939 | 1134 | | In Operation | | 29 Jan 22 | 967 | 1160 | | In Operation | | 30 Jan 22 | 957 | 1153 | | In Operation | | 31 Jan 22 | 1090 | 1223 | | In Operation | | 01 Feb 22 | - | - | | Standby | | 02 Feb 22 | - | - | | Standby | | 03 Feb 22 | - | - | | Standby | | 04 Feb 22 | 924 | 1015 | | In Operation | | 05 Feb 22 | 845 | 1083 | | In Operation | | 06 Feb 22 | 830 | 1073 | | In Operation | | 07 Feb 22 | 870 | 1113 | | In Operation | | 08 Feb 22 | 850 | 1093 | | In Operation | | 09 Feb 22 | 850 | 1083 | | In Operation | | 10 Feb 22 | 840 | 1063 | | In Operation | | 11 Feb 22 | 850 | 1068 | | In Operation | | 12 Feb 22 | 850 | 1068 | | In Operation | | 13 Feb 22 | 880 | 1123 | | In Operation | | 14 Feb 22 | 870 | 1073 | | In Operation | | 15 Feb 22 | 850 | 1073 | 4.4 | In Operation | | 16 Feb 22 | 850 | 1037 | | In Operation | | 17 Feb 22 | 860 | 1083 | | In Operation | | 18 Feb 22 | 860 | 1080 | | In Operation | | 19 Feb 22 | 850 | 1039 | | In Operation | | 20 Feb 22 | - | - | | Standby | | 21 Feb 22 | 890 | 1113 | | In Operation | | 22 Feb 22 | 830 | 1038 | | In Operation | | 23 Feb 22 | 900 | 1083 | | In Operation | | 24 Feb 22 | 830 | 1066 | | In Operation | | 25 Feb 22 | 850 | 1053 | | In Operation | | 26 Feb 22 | 870 | 1063 | | In Operation | | 27 Feb 22 | 850 | 1057 | | In Operation | | 28 Feb 22 | 830 | 1076 | | In Operation | | 1 Mar 22 | 850 | 1043 | | In operation | | 2 Mar 22 | 850 | 1043 | | In operation | | 3 Mar 22 | 850 | 1055 | | In operation | | 4 Mar 22 | 850 | 1053 | | In operation | | 5 Mar 22 | 860 | 1083 | | In operation | | 6 Mar 22 | 830 | 1053 | | In operation | | 7 Mar 22 | 850 | 1083 | 3.9 | In operation | | 8 Mar 22 | 840 | 1073 | | In operation | | 9 Mar 22 | 880 | 1033 | | In operation | | 10 Mar 22 | 880 | 1103 | | In operation | | 11 Mar 22 | 860 | 1093 | | In operation | | 12 Mar 22 | 850 | 1113 | | In operation | | 13 Mar 22 | 870 | 1073 | | In operation | | 14 Mar 22 | 880 | 1123 | | In operation | | 15 Mar 22 | 830 | 1073 | | In operation | | 16 Mar 22 | 840 | 1083 | | In operation | | 17 Mar 22 | 830 | 1073 | | In operation | | 18 Mar 22 | 880 | 1093 | | In operation | | | RESOURCES MANAGEMENT | | | FEN VALLEY LANDELL LTD | | Date | Gas Combustion | Exhaust temperature | Exhaust gas | Operation Status | |-----------|--------------------------|---------------------|---------------------|------------------| | | Temperature (°C) | (K) | velocity (ms-1) (a) | | | 19 Mar 22 | 840 | 1073 | | In operation | | 20 Mar 22 | 830 | 1093 | | In operation | | 21 Mar 22 | 850 | 1093 | | In operation | | 22 Mar 22 | - | - | | Standby | | 23 Mar 22 | 820 | 1043 | | In operation | | 24 Mar 22 | 880 | 1083 | | In operation | | 25 Mar 22 | 850 | 1063 | | In operation | | 26 Mar 22 | 880 | 1083 | | In operation | | 27 Mar 22 | 840 | 1073 | | In operation | | 28 Mar 22 | - | - | | Standby | | 29 Mar 22 | - | - | | Standby | | 30 Mar 22 | 840 | 1083 | | In operation | | 31 Mar 22 | 890 | 1113 |
 In operation | | Average | 878 | 1090 | 4.2 | | | Min | 820 | 1015 | 3.9 | | | Max | 1171 | 1283 | 4.4 | | #### Notes: ⁽a) The exhaust gas velocity was calculated based on the cross-section area of the stack and the gas flow and combustion temperature data measured during the stack emission monitoring. Table D5.5 Landfill Gas Generator Stack Emission Monitoring Results | Parameters | Monitoring Results (January 2022) | |-----------------------------|--| | NO ₂ | 0.008 gs ⁻¹ | | CO | 0.050 gs ⁻¹ | | SO_2 | 0.009 gs ⁻¹ | | Benzene | $2 \times 10^{-6} \text{ gs}^{-1}$ | | Vinyl chloride | <1.3 x 10 ⁻⁶ gs ⁻¹ | | Exhaust gas velocity | 7.8 ms ⁻¹ | | Parameters | Monitoring Results (February 2022) | | NO_2 | 0.016 gs ⁻¹ | | CO | $0.056~{ m gs}^{-1}$ | | SO_2 | 0.002 gs ⁻¹ | | Benzene | <3 x 10 ⁻⁶ gs ⁻¹ | | Vinyl chloride | <2 x 10 ⁻⁶ gs ⁻¹ | | Non-methane Organic Carbons | $2 \times 10^{-4} \text{ gs}^{-1}$ | | Exhaust gas velocity | 11.9 ms ⁻¹ | | Parameters | Monitoring Results (March 2022) | | NO_2 | 1.54 gs ⁻¹ | | CO | $0.04~{ m gs^{-1}}$ | | SO_2 | <0.01 gs ⁻¹ | | Benzene | $<3 \times 10^{-5} \text{ gs}^{-1}$ | | Vinyl chloride | <2 x 10 ⁻⁵ gs ⁻¹ | | Exhaust gas velocity | 9.1 ms ⁻¹ | Table D5.6 Landfill Gas Generator Stack Continuous Monitoring Results | Date | Exhaust | Exhaust gas velocity | Operation Status (Landfill Gas | |-----------|-----------------|----------------------|--------------------------------| | | temperature (K) | $(ms^{-1})^{(a)}$ | Generator in Operation) | | 01 Jan 22 | 840 | | In Operation (ENGB) | | 02 Jan 22 | 839 | | In Operation (ENGB) | | 03 Jan 22 | 839 | | In Operation (ENGB) | | 04 Jan 22 | 842 | | In Operation (ENGB) | | 05 Jan 22 | 842 | | In Operation (ENGB) | | 06 Jan 22 | 841 | | In Operation (ENGB) | | 07 Jan 22 | 841 | | In Operation (ENGB) | | 08 Jan 22 | 835 | | In Operation (ENGB) | | 09 Jan 22 | 840 | | In Operation (ENGB) | | 10 Jan 22 | 839 | | In Operation (ENGB) | | 11 Jan 22 | 841 | | In Operation (ENGB) | | 12 Jan 22 | 839 | | In Operation (ENGB) | | 13 Jan 22 | - | | Under maintenance | | 14 Jan 22 | 845 | | In Operation (ENGA) | | 15 Jan 22 | 838 | | In Operation (ENGA) | | 16 Jan 22 | 853 | 7.8 | In Operation (ENGA) | | 17 Jan 22 | 836 | | In Operation (ENGA) | | 18 Jan 22 | 844 | | In Operation (ENGA) | | 19 Jan 22 | 843 | | In Operation (ENGA) | | 20 Jan 22 | 846 | | In Operation (ENGA) | | 21 Jan 22 | 846 | | In Operation (ENGA) | | 22 Jan 22 | 849 | | In Operation (ENGA) | | 23 Jan 22 | 840 | | In Operation (ENGA) | | 24 Jan 22 | 846 | | In Operation (ENGA) | | 25 Jan 22 | 846 | | In Operation (ENGA) | | Date | Exhaust | Exhaust gas velocity | Operation Status (Landfill Gas | |-----------|-----------------|----------------------|--------------------------------| | | temperature (K) | (ms^{-1}) (a) | Generator in Operation) | | 26 Jan 22 | 847 | · | In Operation (ENGA) | | 27 Jan 22 | 848 | | In Operation (ENGA) | | 28 Jan 22 | 847 | | In Operation (ENGA) | | 29 Jan 22 | 847 | | In Operation (ENGA) | | 30 Jan 22 | 843 | | In Operation (ENGA) | | 31 Jan 22 | 847 | | In Operation (ENGA) | | 01 Feb 22 | 836 | | In Operation (ENGB) | | 02 Feb 22 | 842 | | In Operation (ENGB) | | 03 Feb 22 | 841 | | In Operation (ENGB) | | 04 Feb 22 | 841 | | In Operation (ENGB) | | 05 Feb 22 | 843 | | In Operation (ENGB) | | 06 Feb 22 | 844 | | In Operation (ENGB) | | 07 Feb 22 | 845 | | In Operation (ENGB) | | 08 Feb 22 | 836 | | In Operation (ENGB) | | 09 Feb 22 | 844 | | In Operation (ENGB) | | 10 Feb 22 | 847 | | In Operation (ENGB) | | 11 Feb 22 | 847 | | In Operation (ENGB) | | 12 Feb 22 | 846 | | In Operation (ENGB) | | 13 Feb 22 | 845 | | In Operation (ENGB) | | 14 Feb 22 | 846 | 11.0 | In Operation (ENGA) | | 15 Feb 22 | 845 | 11.9 | In Operation (ENGA) | | 16 Feb 22 | 846 | | In Operation (ENGA) | | 17 Feb 22 | 844 | | In Operation (ENGA) | | 18 Feb 22 | 845 | | In Operation (ENGA) | | 19 Feb 22 | 841 | | In Operation (ENGA) | | 20 Feb 22 | 843 | | In Operation (ENGA) | | 21 Feb 22 | 841 | | In Operation (ENGA) | | 22 Feb 22 | 841 | | In Operation (ENGA) | | 23 Feb 22 | 840 | | In Operation (ENGA) | | 24 Feb 22 | 840 | | In Operation (ENGA) | | 25 Feb 22 | 841 | | In Operation (ENGA) | | 26 Feb 22 | 841 | | In Operation (ENGA) | | 27 Feb 22 | 842 | | In Operation (ENGA) | | 28 Feb 22 | 842 | | In Operation (ENGA) | | 1 Mar 22 | 842 | | In Operation (ENGA) | | 2 Mar 22 | 844 | | In Operation (ENGA) | | 3 Mar 22 | 841 | | In Operation (ENGB) | | 4 Mar 22 | 843 | | In Operation (ENGB) | | 5 Mar 22 | 845 | | In Operation (ENGB) | | 6 Mar 22 | 844 | | In Operation (ENGB) | | 7 Mar 22 | 841 | | In Operation (ENGB) | | 8 Mar 22 | 840 | | In Operation (ENGB) | | 9 Mar 22 | 842 | | In Operation (ENGB) | | 10 Mar 22 | 842 | | In Operation (ENGB) | | 11 Mar 22 | 842 | | In Operation (ENGB) | | 12 Mar 22 | 844 | 9.1 | In Operation (ENGB) | | 13 Mar 22 | 844 | | In Operation (ENGB) | | 14 Mar 22 | 844 | | In Operation (ENGB) | | 15 Mar 22 | 845 | | In Operation (ENGB) | | 16 Mar 22 | 846 | | In Operation (ENGB) | | 17 Mar 22 | 846 | | In Operation (ENGB) | | 18 Mar 22 | 847 | | In Operation (ENGB) | | 19 Mar 22 | 847 | | In Operation (ENGB) | | 20 Mar 22 | 848 | | In Operation (ENGB) | | 21 Mar 22 | 847 | | In Operation (ENGB) | | 22 Mar 22 | 849 | | In Operation (ENGB) | | 23 Mar 22 | 846 | | In Operation (ENGB) | | Date | Exhaust
temperature (K) | Exhaust gas velocity
(ms ⁻¹) ^(a) | Operation Status (Landfill Gas
Generator in Operation) | |-----------|----------------------------|--|---| | 24 Mar 22 | 842 | | In Operation (ENGB) | | 25 Mar 22 | 844 | | In Operation (ENGB) | | 26 Mar 22 | 850 | | In Operation (ENGB) | | 27 Mar 22 | 850 | | In Operation (ENGB) | | 28 Mar 22 | 843 | | In Operation (ENGB) | | 29 Mar 22 | 841 | | In Operation (ENGB) | | 30 Mar 22 | 846 | | In Operation (ENGB) | | 31 Mar 22 | 846 | | In Operation (ENGB) | | Average | 844 | 9.5 | | | Min | 835 | 7.8 | | | Max | 853 | 11.9 | | #### Notes: ⁽a) The exhaust gas velocity was calculated based on the cross-section area of the stack and the gas flow and combustion temperature data measured during the stack emission monitoring. ### Annex D6 # Ambient VOCs, Ammonia and H₂S Monitoring Results Table D6.1 Ambient VOCs, Ammonia and H₂S Monitoring Results | Parameters | Monitoring Results (μg m ⁻³) | | | | | | | | |--------------------------|--|----------------|----------------|----------------|--|--|--|--| | | AM1 | AM2 | AM3 | AM4 | | | | | | Methane | 0.00068% (v/v) | 0.00031% (v/v) | 0.00020% (v/v) | 0.00020% (v/v) | | | | | | Ammonia | <10 | <10 | <10 | <10 | | | | | | H_2S | <14 | <14 | <14 | <14 | | | | | | 1.1.1-Trichloroethane | <0.8 | <0.8 | <0.8 | <0.8 | | | | | | 1.2-Dibromoethane (EDB) | <1.0 | <1.0 | <1.0 | <1.0 | | | | | | 1.2-Dichloroethane | 0.5 | 0.5 | 0.5 | 0.6 | | | | | | Benzene | 2.0 | 1.5 | 1.2 | 1.5 | | | | | | Butan-2-ol | <0.6 | <0.6 | <0.6 | <0.6 | | | | | | Butanethiol | <1.2 | <1.2 | <1.2 | <1.2 | | | | | | Carbon Disulphide | 1.8 | 1.2 | 0.8 | 1.2 | | | | | | Carbon Tetrachloride | 0.7 | 0.8 | 0.7 | 0.8 | | | | | | Chloroform | <0.8 | <0.8 | <0.8 | <0.8 | | | | | | Decanes | 0.7 | <0.7 | 1.8 | <0.7 | | | | | | Dichlorobenzene | <1.0 | <1.0 | <1.0 | <1.0 | | | | | | Dichlorodifluoro-methane | 1.3 | 1.8 | 1.3 | 1.9 | | | | | | Dimethylsulphide | <0.2 | <0.2 | <0.2 | <0.2 | | | | | | Dipropyl ether | <0.8 | <0.8 | <0.8 | <0.8 | | | | | | d-Limonene | 0.8 | <0.4 | 0.9 | <0.4 | | | | | | Ethanethiol | <0.6 | <0.6 | <0.6 | <0.6 | | | | | | Ethanol | 8.2 | <3.8 | <3.8 | <3.8 | | | | | | Ethyl butanoate | <1.0 | <1.0 | <1.0 | <1.0 | | | | | | Ethyl propionate | <0.8 | <0.8 | <0.8 | <0.8 | | | | | | Ethylbenzene | 0.9 | 0.6 | 1.5 | 0.6 | | | | | | Heptane | <0.8 | <0.8 | <0.8 | <0.8 | | | | | | Methanethiol | < 0.4 | <0.4 | <0.4 | <0.4 | | | | | | Methanol | 13.3 | 29.9 | 37.2 | 22.0 | | | | | | Methyl butanoate | <0.8 | <0.8 | <0.8 | <0.8 | | |---------------------|------|------|------|------|--| | Methyl propionate | <0.7 | <0.7 | <0.7 | <0.7 | | | Methylene Chloride | 2.4 | 3.0 | 2.9 | 3.2 | | | n-Butyl acetate | <1.0 | <1.0 | <1.0 | <1.0 | | | n-Butyl benzene | <1.0 | <1.0 | <1.0 | <1.0 | | | Nonane | <0.9 | <0.9 | <0.9 | <0.9 | | | n-Propyl benzene | <0.8 | <0.8 | <0.8 | <0.8 | | | Octane | <0.9 | <0.9 | <0.9 | <0.9 | | | Propyl propionate | <1.0 | <1.0 | <1.0 | <1.0 | | | Terpenes | 2.3 | 0.9 | 0.9 | <0.8 | | | Tetrachloroethylene | 0.7 | 0.7 | 0.7 | <0.7 | | | Toluene | 1.7 | 1.5 | 2.8 | 1.9 | | | Trichloroethylene | <1.1 | <1.1 | <1.1 | <1.1 | | | Undecane | <1.2 | <1.2 | <1.2 | <1.2 | | | Vinyl Chloride | <0.3 | <0.3 | <0.3 | <0.3 | | | Xylenes | 2.3 | 1.6 | 3.5 | 1.0 | | Annex E Noise ### Annex E1 # Noise Monitoring Results Table E1.1 Measured Noise Levels (dB(A)) at NM1 during Normal Working Hours (0700-1900 hours; Normal Weekdays) | Date | Start Time | Finish Time | Weather | L _{10 (30min)} | L _{90 (30min)} | Leq (30min) | |-----------|------------|-------------|---------|-------------------------|-------------------------|--------------| | 7 Jan 22 | 10:15 | 10:45 | Sunny | 53.5 | 47.0 | 53.1 | | 13 Jan 22 | 14:33 | 15:03 | Sunny | 55.0 | 48.5 | 53.4 | | 19 Jan 22 | 10:15 | 10:45 | Sunny | 52.0 | 49.0 | 51.1 | | 25 Jan 22 | 10:36 | 11:06 | Cloudy | 50.5 | 46.5 | 49.4 | | 31 Jan 22 | 10:17 | 10:47 | Cloudy | 51.6 | 48.3 | 50.1 | | 7 Feb 22 | NA | NA | Drizzle | Monitori | ng was cance | lled due to | | | | | | a | dverse weath | er. | | 14 Feb 22 | 15:06 | 15:36 | Sunny | 49.0 | 43.8 | 48.1 | | 24 Feb 22 | 15:39 | 16:09 | Sunny | 49.9 | 44.9 | 49.0 | | 2 Mar 22 | 9:50 | 10:20 | Sunny | 51.0 | 46.7 | 50.0 | | 8 Mar 22 | 13:41 | 14:11 | Sunny | 49.0 | 45.4 | 47.2 | | 14 Mar 22 | 14:05 | 14:35 | Sunny | 53.7 | 48.8 | 51.3 | | 21 Mar 22 | 15:14 | 15:44 | Cloudy | 47.1
| 43.6 | 45.9 | | 28 Mar 22 | NA | NA | Drizzle | Monitori | ng was cance | lled due to | | | | | | a | dverse weath | er. | | | | | | | Average | 49.9 | | | | | | | Mir | 4 5.9 | | | | | | | Max | 53.4 | Note: Correction of +3 dB(A) was made for free field measurements. Figure E1.1 Graphical Presentation for Noise Monitoring at NM1 ### Annex E2 # Event and Action Plan for Noise Monitoring Annex E2 Event and Action Plan for Operational Noise Monitoring | Event | Action | | | | | | | | | |-----------------|---|--|--|--|--|--|--|--|--| | | ET | IEC | Contractor | | | | | | | | Action
Level | Identify the source(s) and investigate the cause(s) of exceedance and complaint Prepare Notification of Exceedance within 24 hours Inform Contractor, IEC and Project Proponent whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures required Ensure remedial measures are properly implemented Have additional monitoring if exceedance is due to the Project. If exceedance stops, cease additional monitoring | Verify the Notification of Exceedance Check monitoring data submitted by ET Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures Audit the effectiveness of the implemented remedial measures | Submit proposals for remedial measures to IEC Implement the agreed proposals | | | | | | | | Limit
Level | Identify the source(s) and investigate the cause(s) of exceedance and complaint Prepare Notification of Exceedance within 24 hours Inform Contractor, IEC, Project Proponent and EPD whether the cause of exceedance is due to the Project Analyse the operation of SENTX and investigate the causes of exceedance Provide interim report to Contractor, IEC, Project Proponent and EPD the causes of the exceedances Discuss with Contractor and IEC for remedial measures required Ensure remedial measures are properly implemented Report the remedial measures implemented and the additional monitoring results to Contactor, IEC, Project Proponent and EPD Have additional monitoring if exceedance is due to the Project. If exceedance stops, cease additional monitoring | Verify the Notification of Exceedance Check monitoring data submitted by ET Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures Audit the effectiveness of the implemented remedial measures | Take immediate measures to avoid further exceedance Submit proposals for remedial measures to IEC within 3 working days of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant activity of works as determined by the Project Proponent until the exceedance is abated | | | | | | | ## Annex F ## Water Quality ### Annex F1 ## Surface Water Quality Monitoring Results Table F1.1 Surface Water Quality Monitoring Results at DP4 | Date | Time | Weather | Water | Water | Water | Ammoniacal- | COD | Suspended | Remarks | |-----------|-------|-----------|------------|-----------|-------------------|--------------------|------------|-------------|---------| | | | Condition | Appearance | Condition | Temperature | nitrogen (mg/L) | | Solids (SS) | | | | | | | | (oC) | | | (mg/L) | | | 25 Jan 22 | 10:02 | Cloudy | | Unable to | collect water san | ple due to insuffi | cient flow | | - | | 24 Feb 22 | 16:11 | Sunny | | Unable to | collect water san | ple due to insuffi | cient flow | | - | | 21 Mar 22 | 14:31 | Overcast | | Unable to | collect water san | ple due to insuffi | cient flow | | | | | | | | | Average | ? - | - | - | - | | | | | | | Mir | 1 - | - | - | - | | | | | | | Max | . - | - | - | - | Table F1.2 Surface Water Quality Monitoring Results at DP6 | Date | Time | Weather | Water | Water | Water | Ammoniacal- | COD | Suspended | Remarks | |-----------|-------|-----------|------------|-----------|-------------------|---------------------|------------|-------------|---------| | | | Condition | Appearance | Condition | Temperature | nitrogen (mg/L) | | Solids (SS) | | | | | | | | (oC) | | | (mg/L) | | | 25 Jan 22 | 10:16 | Cloudy | | Unable to | collect water san | nple due to insuffi | cient flow | | - | | 24 Feb 22 | 15:54 | Sunny | | Unable to | collect water san | nple due to insuffi | cient flow | | - | | 21 Mar 22 | 14:37 | Overcast | | Unable to | collect water san | nple due to insuffi | cient flow | | | | | | | | | Average | e - | - | - | - | | | | | | | Miı | 1 <i>-</i> | - | - | - | | | | | | | Ma | x - | - | - | - | ### Annex F2 # Event and Action Plan for Water Quality Monitoring Annex F2 Event and Action Plan for Water Quality Monitoring During Operation/Restoration Phase | Event | Action | | | | | | | | | |---|---|--|--|--|--|--|--|--|--| | | ET | IEC | Contractor | | | | | | | | Exceedance of
Limit Level for
surface water
monitoring | Identify source(s) of impact and investigate the cause(s) of exceedance Prepare Notification of Exceedance within 24 hours Inform Contractor, IEC, Project Proponent and EPD (EIAO Authority) whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures required Ensure remedial measures are properly implemented Repeat measurement to confirm finding if exceedance is due to the Project Increase monitoring frequency to weekly if exceedance is due to the Project until no exceedance of Limit Level | Verify the Notification of Exceedance Check monitoring data submitted by ET Check Contractor's working methods Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures Audit the effectiveness of the implemented remedial measures | Take immediate action to avoid further exceedance Submit proposals for remedial measures to IEC Implement the agreed proposals Amend proposal if appropriate | | | | | | | | Exceedance of
Limit Level for
groundwater
monitoring | Identify source(s) of impact and investigate the cause(s) of exceedance Prepare Notification of Exceedance within 24 hours Inform Contractor, IEC, Project Proponent and EPD (EIAO Authority) whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures required Ensure remedial measures are properly
implemented Repeat measurement to confirm finding if exceedance is due to the Project Increase monitoring frequency to weekly if exceedance is due to the Project until no exceedance of Limit Level | Verify the Notification of Exceedance Check monitoring data submitted by ET Check Contractor's working methods Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures Audit the effectiveness of the implemented remedial measures | Divert groundwater collected at the collection sumps to the leachate treatment plant Submit proposals for remedial measures to IEC Rectify any unacceptable practice or design Amend working methods as required Implement amended working methods, if necessary | | | | | | | | Event | | Action | | | | | | | | | |---|--|--|---|--|--|--|--|--|--|--| | | ET | IEC | Contractor | | | | | | | | | Exceedance of
Limit Level for
leachate level | Investigate the cause(s) of exceedance Prepare Notification of Exceedance within 24 hours Inform Contractor, IEC, Project Proponent and EPD (EIAO Authority) whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures required Ensure remedial measures are properly implemented | Verify the Notification of Exceedance Check with Contractor on the operating activities and performance of the leachate collection system Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures Audit the effectiveness of the implemented remedial measures | Check the performance of the leachate collection system Rectify any unacceptable practice; Amend leachate collection design if required Implement amended leachate collection system, if necessary | | | | | | | | | Exceedance of
Limit Level of
effluent discharge
from LTP | Investigate the cause(s) of exceedance Prepare Notification of Exceedance within 24 hours Inform Contractor, IEC, Project Proponent and EPD (EIAO Authority) whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures required Ensure remedial measures are properly implemented Repeat measurement to confirm finding if exceedance is due to the Project Increase monitoring frequency to weekly until no exceedance of Limit Level | Verify the Notification of Exceedance Check with Contractor on the operation performance of the LTP Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures Audit the effectiveness of the implemented remedial measures | Rectify any unacceptable practice; Carry out remedial measures or
amend design as required Implement amended design, if
necessary | | | | | | | | ## Leachate Levels Monitoring Results Table F3.1 Leachate Levels Monitoring Results (Pump Station No.1X (Cell 1X)) | Date | Meter No.X1 (cm) | Meter No.X2 (cm) | Average (cm) | |------------------------|------------------|------------------|--------------| | Pump Station N | | , , | <u> </u> | | 01 Jan 22 | 28 | 48 | 38 | | 02 Jan 22 | 28 | 48 | 38 | | 03 Jan 22 | 28 | 48 | 38 | | 04 Jan 22 | 30 | 50 | 40 | | 05 Jan 22 | 53 | 33 | 43 | | 06 Jan 22 | 35 | 55 | 45 | | 07 Jan 22 | 39 | 59 | 49 | | 08 Jan 22 | 42 | 62 | 52 | | 09 Jan 22 | 48 | 68 | 58 | | 10 Jan 22 | 48 | 68 | 58 | | 11 Jan 22 | 50 | 70 | 60 | | 12 Jan 22 | 53 | 73 | 63 | | 13 Jan 22 | 57 | 77 | 67 | | 14 Jan 22 | 66 | 66 | 66 | | 15 Jan 22 | 70 | 91 | 81 | | 16 Jan 22 | 75
75 | 95 | 85 | | 17 Jan 22 | 75
75 | 95 | 85 | | 18 Jan 22 | 77 | 97 | 87 | | 19 Jan 22 | 77 | 97 | 87 | | 20 Jan 22 | 79 | 99 | 89 | | 20 Jan 22
21 Jan 22 | 53 | 73 | 63 | | 22 Jan 22 | 57 | 73
77 | 67 | | 23 Jan 22 | 64 | 82 | 73 | | - | | 82
82 | | | 24 Jan 22 | 64 | | 73 | | 25 Jan 22 | 66 | 86 | 76
79 | | 26 Jan 22 | 68 | 88 | 78 | | 27 Jan 22 | 72 | 91 | 82 | | 28 Jan 22 | 73 | 93 | 83 | | 29 Jan 22 | 75
 | 95
3 7 | 85 | | 30 Jan 22 | 77 | 97 | 87 | | 31 Jan 22 | 77 | 97 | 87 | | 01 Feb 22 | 59 | 79 | 69 | | 02 Feb 22 | 59 | 79 | 69 | | 03 Feb 22 | 59 | 79 | 69 | | 04 Feb 22 | 82 | 62 | 72 | | 05 Feb 22 | 68 | 88 | 78 | | 06 Feb 22 | 68 | 88 | 78 | | 07 Feb 22 | 70 | 91 | 81 | | 08 Feb 22 | 70 | 91 | 81 | | 09 Feb 22 | 93 | 73 | 83 | | 10 Feb 22 | 75 | 95 | 85 | | 11 Feb 22 | 77 | 97 | 87 | | 12 Feb 22 | 53 | 73 | 63 | | 13 Feb 22 | 73 | 53 | 63 | | 14 Feb 22 | 57 | 77 | 67 | | 15 Feb 22 | 62 | 82 | 72 | | 16 Feb 22 | 64 | 84 | 74 | | 17 Feb 22 | 68 | 86 | 77 | | 18 Feb 22 | 70 | 91 | 81 | | 19 Feb 22 | 77 | 97 | 87 | | 20 Feb 22 | 77 | 97 | 87 | | 21 Feb 22 | 77 | 97 | 87 | | 22 Feb 22 | 97 | 117 | 107 | | 23 Feb 22 | 66 | 86 | 76 | | 24 Feb 22 | 73 | 95 | 84 | ENVIRONMENTAL RESOURCES MANAGEMENT | Date | | Meter No.X1 (cm) | Meter No.X2 (cm) | Average (cm) | |-----------|---------|------------------|------------------|--------------| | 25 Feb 22 | | 77 | 97 | 87 | | 26 Feb 22 | | 64 | 84 | 74 | | 27 Feb 22 | | 64 | 84 | 74 | | 28 Feb 22 | | 77 | 97 | 87 | | 1 Mar 22 | | 64 | 84 | 74 | | 2 Mar 22 | | 75 | 95 | 85 | | 3 Mar 22 | | 53 | 73 | 63 | | 4 Mar 22 | | 66 | 86 | 76 | | 5 Mar 22 | | 79 | 99 | 89 | | 6 Mar 22 | | 79 | 99 | 89 | | 7 Mar 22 | | 50 | 70 | 60 | | 8 Mar 22 | | 59 | 79 | 69 | | 9 Mar 22 | | 68 | 88 | 78 | | 10 Mar 22 | | 46 | 68 | 57 | | 11 Mar 22 | | 55 | 77 | 66 | | 12 Mar 22 | | 42 | 62 | 52 | | 13 Mar 22 | | 42 | 62 | 52 | | 14 Mar 22 | | 50 | 70 | 60 | | 15 Mar 22 | | 57 | 77 | 67 | | 16 Mar 22 | | 64 | 84 | 74 | | 17 Mar 22 | | 42 | 62 | 52 | | 18 Mar 22 | | 48 | 70 | 59 | | 19 Mar 22 | | 62 | 82 | 72 | | 20 Mar 22 | | 62 | 82 | 72 | | 21 Mar 22 | | 66 | 88 | 77 | | 22 Mar 22 | | 46 | 66 | 56 | | 23 Mar 22 | | 44 | 64 | 54 | | 24 Mar 22 | | 48 | 68 | 58 | | 25 Mar 22 | | 57 | 77 | 67 | | 26 Mar 22 | | 68 | 48 | 58 | | 27 Mar 22 | | 68 | 48 | 58 | | 28 Mar 22 | | 44 | 64 | 54 | | 29 Mar 22 | | 62 | 82 | 72 | | 30 Mar 22 | | 46 | 66 | 56 | | 31 Mar 22 | | 48 | 68 | 58 | | | Average | 62 | 79 | 70 | | | Min | | 33 | 38 | | | Max | 97 | 117 | 107 | Table F3.2 Leachate Levels Monitoring Results (Pump Station No.2X (Cell 2X)) | Date | Meter No.X1 (cm) | Meter No.X2 (cm) | Average (cm) | |------------------------|------------------|------------------|--------------| | Pump Station N | | (- / | <i>U \ /</i> | | 01 Jan 22 | 125 | 39 | 82 | | 02 Jan 22 | 125 | 39 | 82 | | 03 Jan 22 | 125 | 39 | 82 | | 04 Jan 22 | 125 | 39 | 82 | | 05 Jan 22 | 125 | 39 | 82 | | 06 Jan 22 | 125 | 39 | 82 | | 07 Jan 22 | 125 | 39 | 82 | | 08 Jan 22 | 125 | 39 | 82 | | 09 Jan 22 | 125 | 39 | 82 | | 10 Jan 22 | 125 | 39 | 82 | | 11 Jan 22 | 125 | 39 | 82 | | 12 Jan 22 | 125 | 39 | 82 | | 13 Jan 22 | 125 | 45 | 85 | | 14 Jan 22 | 125 | 45 | 85 | | 15 Jan 22 | 125 | 45 | 85 | | 16 Jan 22 | 125 | 50 | 88 | | 17 Jan 22 | 125 | 50 | 88 | | 18 Jan 22 | 125 | 50 | 88 | | 19 Jan 22 | 125 | 50 | 88 | | 20 Jan 22 | 125 | 56 | 91 | | 21 Jan 22 | 125 | 56 | 91 | | 22 Jan 22 | 125 | 56 | 91 | | 23 Jan 22 | 125 | 56 | 91 | | 24 Jan 22 | 125 | 56 | 91 | | 25 Jan 22 | 125 | 61 | 93 | | 26 Jan 22 | 125 | 61 | 93 | | 27 Jan 22 | 125 | 61 | 93 | | 28 Jan 22 | 125 | 61 | 93 | | 29 Jan 22 | 125 | 61 | 93 | | 30 Jan 22 | 125 | 61 | 93 | | 31 Jan 22 | 125 | 61 | 93 | | 01 Feb 22 | 86 | 88 | 87 | | 02 Feb 22 | 86 | 88 | 87 | | 03 Feb 22 | 86 | 88 | 87 | | 04 Feb 22 | 91 | 93 | 92 | | 05 Feb 22 | 86 | 90 | 88 | | 06 Feb 22 | 86 | 90 | 88 | | 07 Feb 22 | 75 | 77 | 76 | | 08 Feb 22 | 79 | 82 | 81 | | 09 Feb 22 | 84 | 88 | 86 | | 10 Feb 22 | 88 | 90 | 89 | | 11 Feb 22 | 93 | 97 | 95 | | 12 Feb 22 | 75 | 77 | 76 | | 13 Feb 22 | 75 | 77 | 76 | | 14 Feb 22 | 79 | 84 | 82 | | 15 Feb 22 | 84 | 88 | 86 | | 16 Feb 22 | 91 | 93 | 92 | | 17 Feb 22 | 95 | 97 | 96 | | 18 Feb 22 | 70 | 75 | 73 | | 19 Feb 22 | 97 | 97 | 97 | | 20 Feb 22 | 97 | 97 | 97 | | 21 Feb 22 | 91 | 95 | 93 | | 22 Feb 22 | 102 | 104 | 103 | | 22 Feb 22
23 Feb 22 | 82 | 84 | 83 | | 23 Feb 22
24 Feb 22 | 86 | 88 | 87 | | 24 Feb 22
25 Feb 22 | 73 | 75 | 74 | ENVIRONMENTAL RESOURCES MANAGEMENT | Date | | Meter No.X1 (cm) | Meter No.X2 (cm) | Average (cm) | |-----------
---------|------------------|------------------|--------------| | 26 Feb 22 | | 88 | 90 | 89 | | 27 Feb 22 | | 88 | 90 | 89 | | 28 Feb 22 | | 75 | 77 | 76 | | 1 Mar 22 | | 88 | 90 | 89 | | 2 Mar 22 | | 75 | 77 | 76 | | 3 Mar 22 | | 73 | 75 | 74 | | 4 Mar 22 | | 84 | 86 | 85 | | 5 Mar 22 | | 73 | 75 | 74 | | 6 Mar 22 | | 73 | 75 | 74 | | 7 Mar 22 | | 82 | 84 | 83 | | 8 Mar 22 | | 88 | 90 | 89 | | 9 Mar 22 | | 66 | 68 | 67 | | 10 Mar 22 | | 75 | 79 | 77 | | 11 Mar 22 | | 84 | 86 | 85 | | 12 Mar 22 | | 66 | 70 | 68 | | 13 Mar 22 | | 66 | 70 | 68 | | 14 Mar 22 | | 75 | 77 | 76 | | 15 Mar 22 | | 82 | 84 | 83 | | 16 Mar 22 | | 86 | 90 | 88 | | 17 Mar 22 | | 77 | 79 | 78 | | 18 Mar 22 | | 66 | 68 | 67 | | 19 Mar 22 | | 77 | 79 | 78 | | 20 Mar 22 | | 77 | 79 | 78 | | 21 Mar 22 | | 84 | 86 | 85 | | 22 Mar 22 | | 66 | 68 | 67 | | 23 Mar 22 | | 84 | 86 | 85 | | 24 Mar 22 | | 84 | 86 | 85 | | 25 Mar 22 | | 77 | 79 | 78 | | 26 Mar 22 | | 79 | 79 | 79 | | 27 Mar 22 | | 79 | 79 | 79 | | 28 Mar 22 | | 84 | 84 | 84 | | 29 Mar 22 | | 75 | 75 | 75 | | 30 Mar 22 | | 73 | 73 | 73 | | 31 Mar 22 | | 88 | 90 | 89 | | | Average | 96 | 72 | 84 | | | Min | 66 | 39 | 67 | | | Max | 125 | 104 | 103 | Table F3.3 Leachate Levels Monitoring Results (Pump Station No.3X (Cell 3X)) | Date | Meter No.X1 (cm) | Meter No.X2 (cm) | Average (cm) | |---------------------|------------------|------------------|--------------| | Pump Station No. 32 | | • | · · | | 01 Jan 22 | 93 | 93 | 93 | | 02 Jan 22 | 93 | 93 | 93 | | 03 Jan 22 | 93 | 93 | 93 | | 04 Jan 22 | 93 | 93 | 93 | | 05 Jan 22 | 93 | 93 | 93 | | 06 Jan 22 | 95 | 95 | 95 | | 07 Jan 22 | 95 | 95 | 95 | | 08 Jan 22 | 97 | 95 | 96 | | 09 Jan 22 | 97 | 97 | 97 | | • | | | | | 10 Jan 22 | 97 | 97 | 97 | | 11 Jan 22 | 97 | 97 | 97 | | 12 Jan 22 | 97 | 97 | 97 | | 13 Jan 22 | 97 | 97 | 97 | | 14 Jan 22 | 97 | 97 | 97 | | 15 Jan 22 | 97 | 97 | 97 | | 16 Jan 22 | 97 | 97 | 97 | | 17 Jan 22 | 97 | 97 | 97 | | 18 Jan 22 | 97 | 97 | 97 | | 19 Jan 22 | 97 | 97 | 97 | | 20 Jan 22 | 97 | 97 | 97 | | 21 Jan 22 | 97 | 97 | 97 | | 22 Jan 22 | 97 | 97 | 97 | | 23 Jan 22 | 99 | 99 | 99 | | 24 Jan 22 | 99 | 99 | 99 | | 25 Jan 22 | 93 | 95 | 94 | | 26 Jan 22 | 95
95 | 95
95 | 95 | | - | | | | | 27 Jan 22 | 75 | 75 | 75 | | 28 Jan 22 | 84 | 84 | 84 | | 29 Jan 22 | 82 | 85 | 84 | | 30 Jan 22 | 88 | 88 | 88 | | 31 Jan 22 | 88 | 88 | 88 | | 01 Feb 22 | 90 | 90 | 90 | | 02 Feb 22 | 90 | 90 | 90 | | 03 Feb 22 | 90 | 90 | 90 | | 04 Feb 22 | 90 | 90 | 90 | | 05 Feb 22 | 93 | 93 | 93 | | 06 Feb 22 | 93 | 93 | 93 | | 07 Feb 22 | 93 | 93 | 93 | | 08 Feb 22 | 90 | 90 | 90 | | 09 Feb 22 | 90 | 90 | 90 | | 10 Feb 22 | 90 | 90 | 90 | | 11 Feb 22 | 93 | 93 | 93 | | 12 Feb 22 | 93 | 93 | 93 | | | | | | | 13 Feb 22 | 93 | 93 | 93 | | 14 Feb 22 | 93 | 93 | 93 | | 15 Feb 22 | 93 | 93 | 93 | | 16 Feb 22 | 93 | 93 | 93 | | 17 Feb 22 | <i>7</i> 5 | 75 | 75 | | 18 Feb 22 | 77 | 77 | 77 | | 19 Feb 22 | 144 | 144 | 144 | | 20 Feb 22 | 144 | 144 | 144 | | 21 Feb 22 | 108 | 108 | 108 | | 22 Feb 22 | 102 | 102 | 102 | | 23 Feb 22 | 75 | 75 | 75 | | 24 Feb 22 | 75 | 75 | 75 | | 25 Feb 22 | 93 | 93 | 93 | | | | ,,, | , 0 | ENVIRONMENTAL RESOURCES MANAGEMENT | Date | | Meter No.X1 (cm) | Meter No.X2 (cm) | Average (cm) | |-----------|---------|------------------|------------------|--------------| | 26 Feb 22 | | 68 | 67 | 68 | | 27 Feb 22 | | 68 | 67 | 68 | | 28 Feb 22 | | 62 | 62 | 62 | | 1 Mar 22 | | 168 | 168 | 168 | | 2 Mar 22 | | 128 | 128 | 128 | | 3 Mar 22 | | 102 | 102 | 102 | | 4 Mar 22 | | 64 | 64 | 64 | | 5 Mar 22 | | 88 | 88 | 88 | | 6 Mar 22 | | 88 | 88 | 88 | | 7 Mar 22 | | 59 | 59 | 59 | | 8 Mar 22 | | 70 | 70 | 70 | | 9 Mar 22 | | 79 | 79 | 79 | | 10 Mar 22 | | 86 | 86 | 86 | | 11 Mar 22 | | 90 | 90 | 90 | | 12 Mar 22 | | 66 | 66 | 66 | | 13 Mar 22 | | 66 | 66 | 66 | | 14 Mar 22 | | 73 | 73 | 73 | | 15 Mar 22 | | 79 | 79 | 79 | | 16 Mar 22 | | 84 | 84 | 84 | | 17 Mar 22 | | 88 | 88 | 88 | | 18 Mar 22 | | 53 | 53 | 53 | | 19 Mar 22 | | 68 | 68 | 68 | | 20 Mar 22 | | 68 | 68 | 68 | | 21 Mar 22 | | 75 | 75 | 75 | | 22 Mar 22 | | 57 | 57 | 57 | | 23 Mar 22 | | 90 | 90 | 90 | | 24 Mar 22 | | 90 | 90 | 90 | | 25 Mar 22 | | 64 | 64 | 64 | | 26 Mar 22 | | 77 | 77 | 77 | | 27 Mar 22 | | 77 | 77 | 77 | | 28 Mar 22 | | 88 | 88 | 88 | | 29 Mar 22 | | 79 | 79 | 79 | | 30 Mar 22 | | 73 | 73 | 73 | | 31 Mar 22 | | 53 | 53 | 53 | | | Average | 89 | 89 | 89 | | | Min | 53 | 53 | 53 | | | Max | 168 | 168 | 168 | Figure F3.1 Graphical Presentation for Leachate Levels Monitoring (Pump Station No.1X (Cell 1X)) Figure F3.2 Graphical Presentation for Leachate Levels Monitoring (Pump Station No.2X (Cell 2X)) Figure F3.3 Graphical Presentation for Leachate Levels Monitoring (Pump Station No.3X (Cell 3X)) # Effluent Quality Monitoring Results Table F4.1 Effluent Monitoring Results | | | 1 Jan 22 | 2 Jan 22 | 3 Jan 22 | 4 Jan 22 | 5 Jan 22 | 6 Jan 22 | 7 Jan 22 | 8 Jan 22 | 9 Jan 22 | 10 Jan 22 | 11 Jan 22 | |-----------------------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------| | On-site Measurement | S | | | | | | | | | | | | | Temperature | °C | 27.2 | 28.1 | 27.1 | 28.2 | 26.8 | 29.4 | 29.5 | 29 | 28.7 | 21.0 | 25.7 | | pH Value | pH Unit | 8.4 | 8.4 | 8.4 | 8.4 | 8.4 | 8.5 | 8.4 | 8.4 | 8.6 | 8.6 | 8.5 | | Volume Discharged | m^3 | 1194 | 810 | 588 | 1363 | 1230 | 1235 | 1392 | 1273 | 804 | 616 | 1229 | | Laboratory Analysis | | • | | | | | | | | | | | | Suspended Solids (SS) | mg/L | 75 | 24.7 | 23.8 | 24.2 | 22.1 | 22.9 | 21.1 | 29.1 | 23.6 | 16.2 | 21.6 | | Alkalinity | mg/L | 2240 | 2260 | 2300 | 2330 | 2310 | 2240 | 2250 | 2270 | 2260 | 2270 | 2280 | | Ammoniacal-nitrogen | mg/L | 0.3 | 0.27 | 0.56 | 0.43 | 0.46 | 0.49 | 0.47 | 0.51 | 0.36 | 1.2 | 0.3 | | Chloride | mg/L | 2070 | 2110 | 2080 | 1980 | 2320 | 2130 | 2290 | 2230 | 2280 | 2370 | 2410 | | Nitrite-nitrogen | mg/L | 0.14 | 0.17 | 0.55 | 0.19 | 0.32 | 0.19 | 0.23 | 0.37 | 0.39 | 0.88 | 0.2 | | Phosphate | mg/L | 7.99 | 8.34 | 8.82 | 8.7 | 8.31 | 9.53 | 8.95 | 8.45 | 7.76 | 8.13 | 8.07 | | Sulphate | mg/L | 92 | 94 | 94 | 100 | 103 | 108 | 108 | 100 | 94 | 97 | 96 | | Total Nitrogen | mg/L | 114 | 99.3 | 98.4 | 93.1 | 101 | 105 | 119 | 124 | 121 | 118 | 114 | | Nitrate-nitrogen | mg/L | 56.6 | 50.2 | 52.5 | 48.3 | 52.7 | 59.2 | 61.9 | 66.9 | 65.1 | 61.2 | 57.9 | | Гotal Inorganic | mg/L | 57.0 | 50.6 | 53.6 | 48.9 | 53.5 | 59.9 | 62.6 | 67.8 | 65.9 | 63.3 | 58.4 | | Nitrogen | O, | | | | | | | | | | | | | Biochemical Oxygen | mg/L | 14 | 10 | 8 | 9 | 9 | 15 | 9 | 14 | 9 | 20 | 6 | | Demand (BOD) | O. | | | | | | | | | | | | | Chemical Oxygen | mg/L | 1090 | 999 | 1010 | 1090 | 892 | 957 | 948 | 1080 | 984 | 993 | 1010 | | Demand (COD) | O. | | | | | | | | | | | | | Oil & Grease | mg/L | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | | Γotal Organic Carbon | mg/L | 360 | 391 | 356 | 349 | 358 | 375 | 385 | 373 | 394 | 366 | 359 | | (TOC) | | | | | | | | | | | | | | Boron | μg/L | 5680 | 5440 | 5590 | 5760 | 5730 | 5380 | 5400 | 5240 | 5760 | 5380 | 5160 | | Calcium | mg/L | 13.4 | 15.4 | 15.3 | 14.2 | 16.5 | 17.3 | 16.5 | 16.4 | 15.1 | 14.8 | 18.1 | | Iron | mg/L | 1.04 | 1.25 | 1.26 | 1.15 | 1.64 | 1.35 | 1.43 | 1.47 | 1.19 | 1.26 | 1.56 | | Magnesium | mg/L | 14.9 | 16.1 | 16.1 | 16.7 | 25.2 | 23.2 | 24.8 | 26.2 | 22.4 | 22.9 | 28.9 | | Potassium | mg/L | 890 | 883 | 888 | 845 | 907 | 930 | 971 | 975 | 899 | 892 | 828 | | Cadmium | μg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | Chromium | μg/L | 131 | 125 | 125 | 127 | 143 | 134 | 133 | 130 | 123 | 121 | 144 | | Copper | μg/L | 22 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | | Nickel | μg/L | 118 | 115 | 113 | 122 | 132 | 127 | 122 | 122 | 120 | 118 | 128 | | Zinc | μg/L | 64 | 46 | 50 | 52 | 64 | 57 | 50 | 48 | 54 | 48 | 52 | | | | 12 Jan 22 | 13 Jan 22 | 14 Jan 22 | 15 Jan 22 | 16 Jan 22 | 17 Jan 22 | 18 Jan 22 | 19 Jan 22 | 20 Jan 22 | 21 Jan 22 | 22 Jan 22 | |-----------------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | On-site Measurement | s | | | | | | | | | | | | | Temperature | °C | 24.6 | 25 | 25.5 | 25.3 | 29.8 | 27 | 27 | 27.8 | 28 | 21.7 | 28.3 | | pH Value | pH Unit | 8.5 | 8.6 | 8.5 | 8.5 | 8.6 | 8.6 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | | Volume Discharged | m ³ | 1041 | 825 | 1052 | 1144 | 1182 | 1090 | 1251 | 1186 | 1444 | 836 | 1034 | | Laboratory Analysis | | | | | | | | | | | | | | Suspended Solids (SS) | mg/L | 22.7 | 13.8 | 23.5 | 15.4 | 24.9 | 17.6 | 13.6 | 17.9 | 17.7 | 16.2 | 35.8 | | Alkalinity | mg/L | 2270 | 2270 | 2300 | 2290 | 2250 | 2270 | 2280 | 2290 | 2280 | 2360 | 2310 | | Ammoniacal-nitrogen | | 0.35 | 0.36 | 0.34 | 0.3 | 0.34 | 0.35 | 0.35 | 0.32 | 0.3 | 4.74 | 0.38 | | Chloride | mg/L | 2310 | 2220 | 2320 | 2360 | 2370 | 2330 | 2250 | 2230 | 2310 | 2270 | 2360 | | Nitrite-nitrogen | mg/L | 0.23 | 0.3 | 0.2 | 0.15 | 0.28 | 0.36 | 0.29 | 0.3 | 0.21 | 0.63 | 0.19 | | Phosphate | mg/L | 7.56 | 8.9 | 9.81 | 9.52 | 8.98 | 9.32 | 9.48 | 8.5 | 8.64 | 9.6 | 8.37 | | Sulphate | mg/L | 100 | 94 | 94 | 102 | 101 | 96 | 97 | 101 | 100 | 106 | 102 | | Total Nitrogen | mg/L | 112 | 114 | 118 | 110 | 117 | 120 | 120 | 119 | 125 | 123 | 109 | | Nitrate-nitrogen | mg/L | 59.3 | 60.2 | 57 | 58.9 | 63.3 | 65 | 68.4 | 66.3 | 72.1 | 61.5 | 56.4 | | Гotal Inorganic | mg/L | 59.9 | 60.9 | 57.5 | 59.4 | 63.9 | 65.7 | 69.0 | 66.9 | 72.6 | 66.9 | 57.0 | | Nitrogen | O, | | | | | | | | | | | | | Biochemical Oxygen | mg/L | 8 | 7 | 9 | 8 | 10 | 8 | 8 | 13 | 13 | 18 | 15 | | Demand (BOD) | <u>.</u> | | | | | | | | | | | | | Chemical Oxygen | mg/L | 1040 | 1020 | 989 | 943 | 1010 | 943 | 1050 | 1070 | 1050 | 1090 | 1050 | | Demand (COD) | <u>.</u> | | | | | | | | | | | | | Oil & Grease | mg/L | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | | Total Organic
Carbon | mg/L | 373 | 353 | 376 | 337 | 391 | 354 | 351 | 356 | 363 | 392 | 379 | | (TOC) | | | | | | | | | | | | | | Boron | μg/L | 5300 | 5610 | 5540 | 5400 | 5830 | 6380 | 6060 | 5990 | 5890 | 6100 | 6220 | | Calcium | mg/L | 20 | 15.8 | 15.3 | 16.8 | 14.4 | 15.4 | 16.7 | 12.5 | 13.5 | 22 | 19.8 | | Iron | mg/L | 1 | 1.3 | 1.27 | 1.23 | 1.34 | 1.34 | 1.24 | 1.25 | 1.26 | 1.58 | 1.36 | | Magnesium | mg/L | 30 | 26.6 | 25.6 | 26.2 | 26.6 | 27.6 | 27.4 | 20.4 | 21.1 | 26.9 | 25.1 | | Potassium | mg/L | 990 | 962 | 879 | 906 | 1010 | 996 | 944 | 696 | 706 | 1010 | 974 | | Cadmium | μg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | Chromium | μg/L | 144 | 125 | 130 | 121 | 144 | 136 | 131 | 139 | 130 | 139 | 132 | | Copper | μg/L | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | | Nickel | μg/L | 128 | 118 | 122 | 119 | 126 | 126 | 124 | 127 | 122 | 129 | 129 | | Zinc | μg/L | 49 | 45 | 51 | 47 | 49 | 50 | 50 | 49 | 48 | 51 | 49 | | | | 23 Jan 22 | 24 Jan 22 | 25 Jan 22 | 26 Jan 22 | 27 Jan 22 | 28 Jan 22 | 29 Jan 22 | 30 Jan 22 | 31 Jan 22 | |-----------------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | On-site Measurements | s | | | | | | | | | | | Temperature | °C | 33.5 | 28.9 | 29.5 | 27.1 | 30.7 | 27.9 | 32.6 | 27.2 | 25.5 | | pH Value | pH Unit | 8.5 | 8.4 | 8.5 | 8.5 | 8.3 | 8.5 | 8.5 | 8.5 | 8.5 | | Volume Discharged | m ³ | 819 | 597 | 930 | 1220 | 1109 | 1136 | 1089 | 1059 | 791 | | Laboratory Analysis | | | | | | | | | | | | Suspended Solids (SS) | mg/L | 38.5 | 20.5 | 19.2 | 36.1 | 23.4 | 19.8 | 30 | 38.2 | 20.5 | | Alkalinity | mg/L | 2310 | 2380 | 2310 | 2290 | 2310 | 2290 | 2280 | 2320 | 2300 | | Ammoniacal-nitrogen | mg/L | 0.57 | 0.59 | 0.4 | 0.34 | 0.45 | 0.98 | 0.39 | 0.42 | 0.38 | | Chloride | mg/L | 2440 | 2430 | 2200 | 2230 | 2310 | 2290 | 2290 | 2260 | 2290 | | Nitrite-nitrogen | mg/L | 0.27 | 0.41 | 0.25 | 0.22 | 0.3 | 0.55 | 0.19 | 0.22 | 0.26 | | Phosphate | mg/L | 8.27 | 8.22 | 7.96 | 8.41 | 8.43 | 9.25 | 8.89 | 9.47 | 8.94 | | Sulphate | mg/L | 113 | 113 | 113 | 127 | 98 | 100 | 98 | 86 | 99 | | Total Nitrogen | mg/L | 117 | 110 | 98.1 | 99.9 | 119 | 122 | 127 | 128 | 119 | | Nitrate-nitrogen | mg/L | 57.7 | 55 | 47.7 | 48.6 | 62.8 | 67.3 | 66.6 | 66.5 | 62.3 | | Total Inorganic | mg/L | 58.5 | 56.0 | 48.4 | 49.2 | 63.6 | 68.8 | 67.2 | 67.1 | 62.9 | | Nitrogen | O/ | | | | | | | | | | | Biochemical Oxygen | mg/L | 13 | 13 | 9 | 10 | 9 | 13 | 14 | 16 | 9 | | Demand (BOD) | 0, | | | | | | | | | | | Chemical Oxygen | mg/L | 1040 | 1000 | 948 | 975 | 992 | 993 | 1050 | 1080 | 1000 | | Demand (COD) | O, | | | | | | | | | | | Oil & Grease | mg/L | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | | Total Organic Carbon | mg/L | 369 | 370 | 380 | 406 | 445 | 438 | 394 | 386 | 381 | | (TOC) | 0. | | | | | | | | | | | Boron | μg/L | 5640 | 5840 | 5190 | 5270 | 4830 | 4720 | 5040 | 5100 | 5010 | | Calcium | mg/L | 21.4 | 22 | 19.8 | 19.7 | 16.8 | 16.5 | 19.2 | 16.6 | 14.3 | | Iron | mg/L | 1.38 | 1.34 | 1.4 | 1.52 | 1.52 | 1.5 | 1.47 | 1.56 | 1.43 | | Magnesium | mg/L | 26.1 | 26.1 | 28.8 | 31.2 | 28.4 | 28.2 | 29.3 | 28.2 | 25.9 | | Potassium | mg/L | 979 | 1000 | 913 | 891 | 887 | 862 | 937 | 807 | 875 | | Cadmium | μg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | Chromium | μg/L | 130 | 132 | 129 | 143 | 130 | 132 | 127 | 128 | 127 | | Copper | μg/L | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | | Nickel | μg/L | 130 | 132 | 122 | 138 | 122 | 122 | 122 | 123 | 121 | | Zinc | μg/L | 50 | 47 | 51 | 57 | 43 | 43 | 49 | 47 | 50 | | | | 3 Feb 22 | 4 Feb 22 | 5 Feb 22 | 6 Feb 22 | 7 Feb 22 | 8 Feb 22 | 9 Feb 22 | 10 Feb 22 | 11 Feb 22 | 12 Feb 22 | 13 Feb 22 | |-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------| | On-site Measurement | s | | | | | | | | | | | | | Temperature | °C | 23.5 | 23.8 | 25 | 22.7 | 22.3 | 24.5 | 24.8 | 28.1 | 27 | 28.6 | 24.2 | | pH Value | pH Unit | 8.5 | 8.6 | 8.6 | 8.6 | 8.5 | 8.6 | 8.5 | 8.6 | 8.5 | 8.5 | 8.5 | | Volume Discharged | m^3 | 508 | 1256 | 819 | 772 | 385 | 1297 | 1235 | 1346 | 1495 | 1386 | 762 | | Laboratory Analysis | | • | | | | | | | | | | | | Suspended Solids (SS) | mg/L | 35.1 | 35.2 | 49.2 | 52.9 | 30.7 | 24.9 | 17.1 | 21.4 | 23.6 | 33.1 | 27.6 | | Alkalinity | mg/L | 2360 | 2390 | 2360 | 2330 | 2350 | 2370 | 2330 | 2260 | 2250 | 2200 | 2070 | | Ammoniacal-nitrogen | mg/L | 2.73 | 0.31 | 0.3 | 0.26 | 0.4 | 0.36 | 0.38 | 0.27 | 0.44 | 0.3 | 0.3 | | Chloride | mg/L | 2160 | 2230 | 2250 | 2240 | 2210 | 2150 | 2380 | 2250 | 2270 | 2220 | 2160 | | Nitrite-nitrogen | mg/L | 0.67 | 0.19 | 0.18 | 0.25 | 0.17 | 0.18 | 0.19 | 0.18 | 0.1 | 0.17 | 0.17 | | Phosphate | mg/L | 9.32 | 9.41 | 8 | 8.06 | 8.01 | 7.9 | 7.88 | 7.92 | 8.52 | 8.74 | 8.38 | | Sulphate | mg/L | 100 | 109 | 116 | 115 | 112 | 123 | 118 | 119 | 112 | 110 | 126 | | Total Nitrogen | mg/L | 118 | 101 | 98.2 | 95.8 | 92.9 | 92.3 | 101 | 103 | 111 | 120 | 126 | | Nitrate-nitrogen | mg/L | 56.8 | 45.2 | 43.7 | 41.6 | 41.7 | 39.1 | 47.1 | 53.1 | 59.8 | 65.2 | 67.8 | | Total Inorganic | mg/L | 60.2 | 45.7 | 44.2 | 42.1 | 42.3 | 39.6 | 47.7 | 53.6 | 60.3 | 65.7 | 68.3 | | Nitrogen | <u>.</u> | | | | | | | | | | | | | Biochemical Oxygen | mg/L | 22 | 9 | 12 | 10 | 10 | 10 | 9 | 10 | 9 | 15 | 10 | | Demand (BOD) | | | | | | | | | | | | | | Chemical Oxygen | mg/L | 1070 | 1050 | 1090 | 1030 | 984 | 1040 | 1030 | 856 | 967 | 893 | 800 | | Demand (COD) | | | | | | | | | | | | | | Oil & Grease | mg/L | <5 | <5 | <5 | <5 | <5 | 6 | 6 | <5 | <5 | <5 | <5 | | Total Organic Carbon | mg/L | 398 | 424 | 407 | 389 | 389 | 409 | 477 | 457 | 498 | 469 | 416 | | (TOC) | | | | | | | | | | | | | | Boron | μg/L | 5790 | 5410 | 6180 | 5750 | 5830 | 5690 | 6010 | 5890 | 5470 | 5310 | 5030 | | Calcium | mg/L | 16.9 | 18 | 19.1 | 17.8 | 17.6 | 16.8 | 16.1 | 16.8 | 20.3 | 20 | 19 | | Iron | mg/L | 1.53 | 1.65 | 1.66 | 1.62 | 1.48 | 1.65 | 1.61 | 1.4 | 1.49 | 1 | 1.2 | | Magnesium | mg/L | 27.2 | 31.2 | 33.2 | 32.2 | 30.7 | 32.3 | 32.2 | 28.1 | 30.8 | 29 | 25.6 | | Potassium | mg/L | 801 | 877 | 880 | 906 | 855 | 832 | 928 | 852 | 977 | 856 | 807 | | Cadmium | μg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | Chromium | μg/L | 142 | 140 | 139 | 140 | 137 | 139 | 137 | 128 | 132 | 127 | 122 | | Copper | μg/L | <10 | <10 | <10 | 68 | <10 | <10 | <10 | <10 | <10 | <10 | 56 | | Nickel | μg/L | 125 | 123 | 123 | 121 | 122 | 127 | 128 | 126 | 123 | 118 | 112 | | Zinc | μg/L | 54 | 62 | 59 | 92 | 60 | 57 | 57 | 52 | 53 | 54 | 79 | #### Notes: Effluent monitoring was suspended on 1 and 2 Feb 2022 as the Leachate Treatment Plant (LTP) was not in operation and no treated effluent was discharged from the on-site LTP to the foul sewer leading to Tseung Kwan O Sewage Treatment Works (TKO STW) on 1 and 2 Feb 2022. | | | 14 Feb 22 | 15 Feb 22 | 16 Feb 22 | 17 Feb 22 | 18 Feb 22 | 19 Feb 22 | 20 Feb 22 | 21 Feb 22 | 22 Feb 22 | 23 Feb 22 | 24 Feb 22 | |-----------------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | On-site Measurement | S | | | | | | | | | | | | | Temperature | °C | 26 | 26.3 | 27.4 | 26.7 | 24.5 | 26.3 | 15.3 | 13.2 | 18.2 | 21 | 21.8 | | pH Value | pH Unit | 8.5 | 8.5 | 8.5 | 8.6 | 8.6 | 8.3 | 8.4 | 8.6 | 8.4 | 8.3 | 8.3 | | Volume Discharged | m ³ | 821 | 1221 | 1434 | 1475 | 1352 | 1445 | 1274 | 747 | 1492 | 1492 | 1492 | | Laboratory Analysis | | • | | | | | | | | | | | | Suspended Solids (SS) | mg/L | 22.3 | 28.5 | 26.4 | 49.6 | 40.1 | 40.4 | 16.5 | 13.6 | 32 | 20.3 | 20.3 | | Alkalinity | mg/L | 2250 | 2080 | 2320 | 2240 | 2180 | 2210 | 1940 | 2030 | 1650 | 20.3 | 20.3 | | Ammoniacal-nitrogen | mg/L | 0.32 | 0.22 | 0.28 | 0.25 | 0.3 | 0.26 | 0.25 | 0.26 | 0.14 | 20.3 | 20.3 | | Chloride | mg/L | 2280 | 1820 | 2170 | 2120 | 2120 | 2090 | 1660 | 1920 | 1670 | 20.3 | 20.3 | | Nitrite-nitrogen | mg/L | 0.33 | 0.19 | 0.21 | 0.21 | 0.24 | 0.22 | 0.18 | 0.29 | 0.14 | 20.3 | 20.3 | | Phosphate | mg/L | 9.39 | 8.58 | 8.84 | 8.93 | 8.63 | 8.52 | 7.17 | 8.33 | 6.55 | 20.3 | 20.3 | | Sulphate | mg/L | 106 | 130 | 127 | 121 | 120 | 96 | 138 | 107 | 121 | 20.3 | 20.3 | | Гotal Nitrogen | mg/L | 132 | 124 | 121 | 129 | 134 | 128 | 106 | 119 | 102 | 20.3 | 20.3 | | Nitrate-nitrogen | mg/L | 72.8 | 65.2 | 63.7 | 67.5 | 71.3 | 63.7 | 53.4 | 71 | 58.8 | 20.3 | 20.3 | | Total Inorganic | mg/L | 73.5 | 65.6 | 64.2 | 68.0 | 71.8 | 64.2 | 53.8 | 71.6 | 59.1 | 45.2 | 38.9 | | Nitrogen | O, | | | | | | | | | | | | | Biochemical Oxygen | mg/L | 9 | 10 | 11 | 15 | 14 | 15 | 8 | 15 | 9 | 20.3 | 20.3 | | Demand (BOD) | O. | | | | | | | | | | | | | Chemical Oxygen | mg/L | 837 | 982 | 1040 | 1040 | 1060 | 1000 | 718 | 915 | 753 | 20.3 | 20.3 | | Demand (COD) | | | | | | | | | | | | | | Oil & Grease | mg/L | 5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | 20.3 | 20.3 | | Total Organic Carbon | mg/L | 470 | 426 | 490 | 449 | 431 | 449 | 363 | 421 | 325 | 20.3 | 20.3 | | (TOC) | | | | | | | | | | | | | | Boron | μg/L | 5560 | 5280 | 5780 | 5390 | 5570 | 5720 | 4770 | 4980 | 4560 | 20.3 | 20.3 | | Calcium | mg/L | 17.2 | 19.5 | 18.7 | 20.1 | 20 | 18.4 | 20.1 | 17.1 | 24.1 | 20.3 | 20.3 | | Iron | mg/L | 1.36 | 1.37 | 1.54 | 1.73 | 1.68 | 1.54 | 1.24 | 1.29 | 1.05 | 20.3 | 20.3 | | Magnesium | mg/L | 26.7 | 26.3 | 28.8 | 29 | 28.4 | 27.2 | 24 | 24 | 22 | 20.3 | 20.3 | | Potassium | mg/L | 895 | 790 | 908 | 893 | 919 | 812 | 755 | 825 | 699 | 20.3 | 20.3 | | Cadmium | μg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | 20.3 | 20.3 | | Chromium | μg/L | 129 | 126 | 138 | 135 | 132 | 135 | 115 | 118 | 102 | 20.3 | 20.3 | | Copper | μg/L | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | 21 | 20.3 | 20.3 | | Nickel |
μg/L | 116 | 112 | 124 | 119 | 123 | 120 | 105 | 107 | 92 | 20.3 | 20.3 | | Zinc | μg/L | 47 | 48 | 55 | 50 | 53 | 56 | 58 | 67 | 85 | 20.3 | 20.3 | | | | 25 Feb 22 | 26 Feb 22 | 27 Feb 22 | 28 Feb 22 | |-----------------------|----------------|-----------|-----------|-----------|-----------| | On-site Measurements | S | | | | | | Temperature | °C | 26.5 | 25.1 | 25.6 | 27.5 | | pH Value | pH Unit | 8.2 | 8.3 | 8.3 | 8.3 | | Volume Discharged | m ³ | 1496 | 1495 | 1495 | 1140 | | Laboratory Analysis | | | | | | | Suspended Solids (SS) | mg/L | 20 | 44 | 33.7 | 20.2 | | Alkalinity | mg/L | 1400 | 1540 | 1560 | 1560 | | Ammoniacal-nitrogen | mg/L | 0.32 | 0.25 | 0.28 | 0.27 | | Chloride | mg/L | 1330 | 1470 | 1500 | 1480 | | Nitrite-nitrogen | mg/L | 0.2 | 0.11 | 0.1 | 0.1 | | Phosphate | mg/L | 4.09 | 4.37 | 4.2 | 4.61 | | Sulphate | mg/L | 203 | 194 | 196 | 192 | | Total Nitrogen | mg/L | 84.5 | 86.4 | 87.9 | 72 | | Nitrate-nitrogen | mg/L | 39.7 | 38.9 | 37.4 | 35.6 | | Total Inorganic | mg/L | 40.2 | 39.3 | 37.8 | 36.0 | | Nitrogen | Ç. | | | | | | Biochemical Oxygen | mg/L | 9 | 11 | 9 | 6 | | Demand (BOD) | | | | | | | Chemical Oxygen | mg/L | 910 | 1000 | 764 | 619 | | Demand (COD) | | | | | | | Oil & Grease | mg/L | <5 | <5 | <5 | <5 | | Total Organic Carbon | mg/L | 288 | 302 | 296 | 284 | | (TOC) | | | | | | | Boron | μg/L | 3680 | 3870 | 4100 | 4030 | | Calcium | mg/L | 55 | 54.3 | 58.9 | 54.6 | | Iron | mg/L | 0.86 | 1.06 | 1.46 | 0.93 | | Magnesium | mg/L | 21.4 | 24.4 | 24.4 | 21.5 | | Potassium | mg/L | 544 | 640 | 670 | 633 | | Cadmium | μg/L | <1.0 | <1.0 | <1.0 | <1.0 | | Chromium | μg/L | 80 | 92 | 100 | 94 | | Copper | μg/L | <10 | <10 | <10 | <10 | | Nickel | μg/L | 77 | 89 | 93 | 92 | | Zinc | μg/L | 68 | 76 | 76 | 62 | | | | 1 Mar 22 | 2 Mar 22 | 3 Mar 22 | 4 Mar 22 | 5 Mar 22 | 6 Mar 22 | 7 Mar 22 | 8 Mar 22 | 9 Mar 22 | 10 Mar 22 | 11 Mar 22 | |-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------| | On-site Measurement | s | | | | | | | | | | | | | Temperature | °C | 30.1 | 30 | 27.8 | 30.1 | 28.9 | 24.9 | 27.7 | 28.7 | 28.5 | 32.7 | 32.6 | | pH Value | pH Unit | 8.3 | 8.4 | 8.4 | 8.4 | 8.4 | 8.5 | 8.5 | 8.5 | 8.4 | 8.4 | 8.5 | | Volume Discharged | m^3 | 1341 | 1496 | 1496 | 1498 | 1372 | 678 | 644 | 1367 | 1497 | 1380 | 950 | | Laboratory Analysis | | | | | | | | | | | | | | Suspended Solids (SS) | mg/L | 27 | 38.7 | 16.7 | 18.3 | 19.2 | 17.1 | 14.2 | 23.9 | 20.4 | 31.5 | 22.6 | | Alkalinity | mg/L | 1460 | 1540 | 1520 | 1470 | 1530 | 1750 | 1830 | 1670 | 1980 | 2070 | 2260 | | Ammoniacal-nitrogen | mg/L | 0.35 | 0.29 | 0.35 | 0.31 | 0.35 | 0.38 | 0.47 | 0.31 | 0.34 | 0.37 | 0.33 | | Chloride | mg/L | 1420 | 1550 | 1400 | 1390 | 1520 | 1690 | 1780 | 1610 | 1850 | 1700 | 1910 | | Nitrite-nitrogen | mg/L | 0.11 | 0.11 | 0.11 | 0.13 | 0.16 | 0.15 | 0.44 | 0.11 | 0.14 | 0.14 | 0.16 | | Phosphate | mg/L | 4.41 | 4.98 | 5.29 | 5.47 | 5.98 | 6.82 | 7.25 | 6.95 | 9 | 9.8 | 10.1 | | Sulphate | mg/L | 199 | 157 | 181 | 182 | 181 | 163 | 164 | 175 | 164 | 128 | 122 | | Total Nitrogen | mg/L | 69.6 | 96.4 | 87.9 | 96.3 | 98.6 | 91.4 | 84.2 | 78.5 | 84.7 | 100 | 116 | | Nitrate-nitrogen | mg/L | 32.3 | 46.7 | 49.6 | 56 | 57.2 | 45 | 37.5 | 37.6 | 37.3 | 48.7 | 61.4 | | Гotal Inorganic | mg/L | | | | | | | | | | | | | Nitrogen | <u>.</u> | 32.8 | 47.1 | 50.1 | 56.4 | 57.7 | 45.5 | 38.4 | 38.0 | 37.8 | 49.2 | 61.9 | | Biochemical Oxygen | mg/L | | | | | | | | | | | | | Demand (BOD) | <u>.</u> | 8 | 9 | 13 | 13 | 10 | 6 | 7 | 9 | 6 | 7 | 7 | | Chemical Oxygen | mg/L | | | | | | | | | | | | | Demand (COD) | | 710 | 692 | 983 | 619 | 856 | 902 | 826 | 790 | 826 | 1190 | 544 | | Oil & Grease | mg/L | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | | Total Organic Carbon | mg/L | | | | | | | | | | | | | (TOC) | | 334 | 314 | 313 | 311 | 326 | 334 | 333 | 341 | 390 | 395 | 387 | | Boron | μg/L | 3560 | 4380 | 4190 | 4330 | 4520 | 4690 | 4590 | 4340 | 5140 | 5040 | 5200 | | Calcium | mg/L | 56.5 | 56 | 53.7 | 58.5 | 51.6 | 50.9 | 47.2 | 37.4 | 29.4 | 32.4 | 26.7 | | Iron | mg/L | 0.86 | 1.08 | 0.99 | 1.01 | 1.05 | 1.19 | 1.08 | 1.14 | 1.14 | 1.24 | 1.31 | | Magnesium | mg/L | 21.3 | 22.6 | 22.3 | 22.4 | 21.6 | 24.9 | 23.8 | 21.1 | 21.2 | 24 | 23.9 | | Potassium | mg/L | 561 | 665 | 686 | 689 | 691 | 709 | 776 | 652 | 697 | 777 | 877 | | Cadmium | μg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | Chromium | μg/L | 88 | 88 | 88 | 86 | 90 | 105 | 102 | 92 | 106 | 126 | 134 | | Copper | μg/L | <10 | 23 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | | Nickel | μg/L | 85 | 85 | 84 | 80 | 86 | 107 | 108 | 100 | 110 | 118 | 125 | | Zinc | μg/L | 59 | 76 | 52 | 46 | 48 | 56 | 54 | 61 | 61 | 54 | 56 | | | | 12 Mar 22 | 13 Mar 22 | 14 Mar 22 | 15 Mar 22 | 16 Mar 22 | 17 Mar 22 | 18 Mar 22 | 19 Mar 22 | 20 Mar 22 | 21 Mar 22 | 22 Mar 22 | 23 Mar 22 | |---------------------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | On-site Measuremen | nts | | | | | | | | | | | | | | Temperature | °C | 29.3 | 30.9 | 31.7 | 29.7 | 28.9 | 31.9 | 31.9 | 29.1 | 25.8 | 29.9 | 29.7 | 25.1 | | pH Value | pH Unit | 8.5 | 8.4 | 8.4 | 8.5 | 8.4 | 8.5 | 8.5 | 8.4 | 8.4 | 8.5 | 8.5 | 8.5 | | Volume Discharged | m^3 | 730 | 665 | 366 | 764 | 1143 | 1141 | 1125 | 1178 | 793 | 357 | 1033 | 1341 | | Laboratory Analysis | ; | | | | | | | | | | | | | | Suspended Solids | | | | | | | | | | | | | | | (SS) | mg/L | 23.4 | 84.8 | 10.7 | 14.6 | 20.4 | 21.8 | 31.6 | 12.5 | 14.7 | 19.5 | 19.2 | 20.2 | | Alkalinity | mg/L | 2300 | 2310 | 2310 | 2100 | 1750 | 1860 | 2020 | 1950 | 2040 | 2320 | 2170 | 2230 | | Ammoniacal- | | | | | | | | | | | | | | | nitrogen | mg/L | 0.34 | 0.31 | 1.39 | 0.59 | 0.33 | 0.37 | 0.33 | 0.32 | 0.34 | 0.39 | 0.36 | 0.35 | | Chloride | mg/L | 1970 | 2060 | 2080 | 1800 | 1570 | 1650 | 1720 | 1690 | 1740 | 2150 | 1910 | 1950 | | Nitrite-nitrogen | mg/L | 0.19 | 0.23 | 1.12 | 1.18 | 0.14 | 0.16 | 0.18 | 0.18 | 0.18 | 0.29 | 0.18 | 0.18 | | Phosphate | mg/L | 10.2 | 9.97 | 10.4 | 9.55 | 8.23 | 8.3 | 8.5 | 8.1 | 7.89 | 9.96 | 8.53 | 8.43 | | Sulphate | mg/L | 121 | 118 | 116 | 140 | 177 | 170 | 152 | 153 | 139 | 114 | 133 | 130 | | Total Nitrogen | mg/L | 112 | 120 | 112 | 104 | 78 | 83.9 | 102 | 96.7 | 94.4 | 107 | 106.0 | 110.0 | | Nitrate-nitrogen | mg/L | 57.3 | 61.1 | 60.8 | 55 | 37.8 | 39.2 | 45.7 | 47.7 | 45.6 | 51.5 | 53.8 | 55.4 | | Total Inorganic | mg/L | | | | | | | | | | | | | | Nitrogen | O, | 57.8 | 61.6 | 63.3 | 56.8 | 38.3 | 39.7 | 46.2 | 48.2 | 46.1 | 52.2 | 54.3 | 55.9 | | Biochemical Oxygen | mg/L | | | | | | | | | | | | | | Demand (BOD) | O, | 7 | 12 | 8 | 8 | 11 | 9 | 12 | 8 | 7 | 8 | 7 | 10 | | Chemical Oxygen | mg/L | | | | | | | | | | | | | | Demand (COD) | O, | 516 | 590 | 982 | 1010 | 892 | 964 | 903 | 1050 | 1090 | 1130 | 993 | 1050 | | Oil & Grease | mg/L | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | | Total Organic | mg/L | | | | | | | | | | | | | | Carbon (TOC) | O, | 488 | 418 | 410 | 350 | 332 | 355 | 394 | 372 | 418 | 497 | 412 | 404 | | Boron | μg/L | 5370 | 5530 | 5320 | 5170 | 3830 | 4390 | 4900 | 4950 | 4930 | 5530 | 5480 | 5570 | | Calcium | mg/L | 26 | 24.6 | 22.9 | 23.9 | 26.3 | 22.9 | 21.8 | 21.5 | 20.3 | 18.9 | 19.5 | 20.4 | | Iron | mg/L | 1 | 1.42 | 1.27 | 1.28 | 1.18 | 1.19 | 1.4 | 1.33 | 1.46 | 1.46 | 1.54 | 1.63 | | Magnesium | mg/L | 24 | 24.4 | 23.2 | 24 | 24.2 | 22.6 | 23.9 | 24.7 | 24.5 | 26.9 | 25.9 | 27.6 | | Potassium | mg/L | 882 | 888 | 900 | 820 | 622 | 707 | 784 | 735 | 774 | 922 | 836 | 874 | | Cadmium | μg/L | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | Chromium | μg/L | 140 | 143 | 141 | 127 | 104 | 107 | 121 | 109 | 112 | 126 | 123 | 134 | | Copper | μg/L | <10 | 23 | <10 | <10 | <10 | <10 | 15 | <10 | <10 | <10 | <10 | <10 | | Nickel | μg/L | 130 | 130 | 127 | 119 | 98 | 103 | 112 | 101 | 107 | 122 | 115 | 119 | | Zinc | μg/L | 62 | 100 | 67 | 73 | 97 | 102 | 113 | 106 | 104 | 69 | 99 | 102 | # Groundwater Monitoring Results Table F5.1 Groundwater Monitoring Results (January 2022) | Parameters | Units | MWX-1 | MWX-2 | MWX-3 | MWX-4 | MWX-5 | MWX-6 | MWX-7 | MWX-8 | MWX-9 | MWX-10 | MWX-11 | MWX-12 | MWX-13 | MWX-14 | |---------------------------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Water Level | mPD | 2.61 | 2.72 | 2.70 | 2.61 | 2.58 | 2.51 | 2.48 | 2.37 | 2.68 | 2.66 | 2.98 | 6.29 | 35.86 | 43.21 | | Bicarbonate Alkalinity as CaCO3 | mg/L | 134 | 301 | 161 | <1 | <1 | <1 | 50 | <1 | 74 | 163 | 146 | 59 | 15 | 10 | | Carbonate Alkalinity as CaCO3 | mg/L | <1 | <1 | <1 | 91 | 75 | 94 | 15 | 79 | 16 | <1 | <1 | <1 | <1 | <1 | | Total Alkalinity as CaCO3 | mg/L | 134 | 301 | 161 | 144 | 106 | 211 | 65 | 110 | 90 | 163 | 146 | 59 | 15 | 10 | | pH Value | pH Unit | 7.7 | 7.8 | 7.8 | 10.9 | 10.6 | 11.1 | 8.8 | 10.3 | 8.7 | 7.7 | 8 | 6.6 | 5.4 | 5.5 | | Electrical Conductivity @ 25°C | μS/cm | 752 | 786 | 1060 | 1220 | 1210 | 1400 | 2770 | 3070 | 2330 | 1150 | 374 | 311 | 95 | 92 | | Ammonia as N | mg/L | 0.17 | < 0.01 | 1.07 | 7.6 | 1.9 | 3.83 | 6.26 | 13.3 | 6.42 | < 0.01 | 0.11 | < 0.01 | 0.02 | < 0.01 | | Chloride | mg/L | 118 | 30 | 181 | 270 | 215 | 183 | 889 | 983 | 658 | 231 | 26 | 23 | 16 | 18 | | Nitrite as N | mg/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Reactive Phosphorus as P | mg/L | < 0.01 | < 0.01 | 0.01 | < 0.01 | < 0.01 | < 0.01 | 0.02 | < 0.01 | 0.03 | 0.04 | 0.02 | 0.04 | < 0.01 | < 0.01 | | Sulphate as SO4 - Turbidimetric | mg/L | 59 | 85 | 95 | 55 | 158 | 96 | 45 | 43 | 152 | 82 | 7 | 54 | 3 | 3 | | Sulphide as S2- | mg/L | < 0.1 | < 0.1
| < 0.1 | 6.4 | 3.3 | 11 | 1 | 10.9 | 0.5 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Total Kjeldahl Nitrogen as N | mg/L | 0.2 | 0.1 | 1.2 | 7.8 | 2 | 4.3 | 6.6 | 14 | 6.5 | < 0.1 | 0.2 | 0.1 | < 0.1 | 0.1 | | Nitrate as N | mg/L | 0.05 | 0.29 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | 0.1 | 0.12 | | Total Nitrogen as N | mg/L | 0.3 | 0.4 | 1.2 | 7.8 | 2 | 4.3 | 6.6 | 14 | 6.5 | < 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | | Boron | μg/L | 120 | 200 | 170 | 160 | 180 | 170 | 630 | 530 | 500 | 100 | 50 | 20 | 10 | 10 | | Calcium | mg/L | 56.5 | 59.3 | 84.2 | 55.4 | 32 | 33.5 | 34.6 | 67.5 | 39 | 86.4 | 46.8 | 27.1 | 0.87 | 0.86 | | Mercury | μg/L | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | Magnesium | mg/L | 5.68 | 52.4 | 5.58 | < 0.05 | < 0.05 | < 0.05 | 8.86 | 0.05 | 12.6 | 11.4 | 2.97 | 4.18 | 0.98 | 0.74 | | Sodium | mg/L | 92.4 | 36.9 | 102 | 144 | 172 | 166 | 484 | 439 | 352 | 133 | 29.4 | 25.4 | 14 | 13.6 | | Iron | mg/L | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | 0.14 | 0.59 | < 0.04 | < 0.04 | | Potassium | mg/L | 20.3 | 10.5 | 26.2 | 37.1 | 58.8 | 59.3 | 54.3 | 45.8 | 43.5 | 11.2 | 7.15 | 2.95 | 4 | 3.51 | | Cadmium | μg/L | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | Chromium | μg/L | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Copper | μg/L | 1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 1 | <1 | | Lead | μg/L | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Manganese | μg/L | 554 | 142 | 974 | <1 | <1 | <1 | 4 | <1 | 9 | 2550 | 567 | 770 | 28 | 7 | | Nickel | μg/L | <1 | <1 | <1 | 2 | <1 | 2 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Zinc | μg/L | <10 | 2930 | <10 | <10 | <10 | <10 | 27 | <10 | <10 | <10 | <10 | 14 | 11 | <10 | | Biochemical Oxygen Demand | mg/L | <2 | <2 | <2 | 4 | 4 | 9 | <2 | 5 | 2 | <2 | <2 | <2 | <2 | <2 | | Chemical Oxygen Demand | mg/L | 9 | <2 | 15 | 34 | 25 | 44 | 15 | 20 | 26 | 20 | 2 | 7 | <2 | <2 | | Total Organic Carbon | mg/L | 4 | 2 | 10 | 13 | 8 | 12 | 6 | 10 | 11 | 6 | 3 | 2 | 2 | 1 | Table F5.2 Groundwater Monitoring Results (February 2022) | Parameters | Units | MWX-1 | MWX-2 | MWX-3 | MWX-4 | MWX-5 | MWX-6 | MWX-7 | MWX-8 | MWX-9 | MWX-10 | MWX-11 | MWX-12 | MWX-13 | MWX-14 | |---------------------------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Water Level | mPD | 2.59 | 2.66 | 2.62 | 2.54 | 2.53 | 2.34 | 2.18 | 2.23 | 2.33 | 2.20 | 2.71 | 6.11 | 35.31 | 41 | | Bicarbonate Alkalinity as CaCO3 | mg/L | 152 | 307 | 92 | <1 | <1 | <1 | 66 | <1 | 78 | 160 | 166 | 62 | 15 | 11 | | Carbonate Alkalinity as CaCO3 | mg/L | <1 | <1 | <1 | 91 | 54 | 147 | 10 | 89 | 8 | <1 | <1 | <1 | <1 | <1 | | Total Alkalinity as CaCO3 | mg/L | 152 | 307 | 92 | 141 | 64 | 201 | 76 | 121 | 87 | 160 | 166 | 62 | 15 | 11 | | pH Value | pH Unit | 7.8 | 7.8 | 7.9 | 10.7 | 10.3 | 11.2 | 8.6 | 10.7 | 8.5 | 7.7 | 7.8 | 6.5 | 5.5 | 5.4 | | Electrical Conductivity @ 25°C | μS/cm | 851 | 800 | 1010 | 1250 | 1510 | 1230 | 2900 | 3160 | 1200 | 1280 | 406 | 307 | 95 | 97 | | Ammonia as N | mg/L | 0.34 | < 0.01 | 1.25 | 7.29 | 2.39 | 3.86 | 5.7 | 14.2 | 5.14 | 0.03 | 0.12 | < 0.01 | < 0.01 | < 0.01 | | Chloride | mg/L | 136 | 31 | 209 | 277 | 366 | 192 | 917 | 1010 | 287 | 282 | 25 | 23 | 16 | 19 | | Nitrite as N | mg/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Reactive Phosphorus as P | mg/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.04 | 0.02 | 0.04 | < 0.01 | < 0.01 | | Sulphate as SO4 - Turbidimetric | mg/L | 65 | 92 | 82 | 52 | 110 | 79 | 42 | 39 | 78 | 88 | 5 | 46 | 3 | 4 | | Sulphide as S2- | mg/L | < 0.1 | < 0.1 | 0.2 | 7.8 | 2.8 | 9 | 0.8 | 6.9 | 0.8 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Total Kjeldahl Nitrogen as N | mg/L | 0.3 | < 0.1 | 1.5 | 8.4 | 2.8 | 4.8 | 6.3 | 15 | 5.3 | < 0.1 | 0.2 | 0.2 | < 0.1 | < 0.1 | | Nitrate as N | mg/L | 0.07 | 0.27 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | 0.09 | 0.07 | | Total Nitrogen as N | mg/L | 0.4 | 0.3 | 1.5 | 8.4 | 2.8 | 4.8 | 6.3 | 15 | 5.3 | < 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | | Boron | μg/L | 140 | 210 | 190 | 170 | 180 | 180 | 680 | 560 | 390 | 110 | 60 | 20 | 10 | 10 | | Calcium | mg/L | 43.4 | 58.9 | 68.3 | 60 | 26.3 | 33.2 | 30.3 | 71 | 22.9 | 88.8 | 46.5 | 28.2 | 0.95 | 1.23 | | Mercury | μg/L | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | Magnesium | mg/L | 7.35 | 48.1 | 3.5 | < 0.05 | 0.06 | < 0.05 | 12.6 | < 0.05 | 6.58 | 11.5 | 3.38 | 4.09 | 1.04 | 0.99 | | Sodium | mg/L | 91.8 | 35 | 125 | 160 | 215 | 153 | 477 | 525 | 182 | 156 | 29.6 | 27.2 | 15.4 | 17.2 | | Iron | mg/L | < 0.04 | < 0.04 | 0.08 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | 0.41 | < 0.04 | < 0.04 | | Potassium | mg/L | 18.8 | 10.7 | 26 | 39 | 54.1 | 53.9 | 47.4 | 54.5 | 29.5 | 10.7 | 6.8 | 2.78 | 3.91 | 3.9 | | Cadmium | μg/L | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | Chromium | μg/L | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Copper | μg/L | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 1 | 1 | | Lead | μg/L | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Manganese | μg/L | 952 | 144 | 564 | <1 | <1 | <1 | 8 | <1 | 10 | 3130 | 371 | 718 | 18 | 9 | | Nickel | μg/L | <1 | <1 | <1 | 2 | <1 | 1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Zinc | μg/L | <10 | 50 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | 11 | <10 | <10 | | Biochemical Oxygen Demand | mg/L | <2 | <2 | <2 | <2 | <2 | 2 | <2 | 2 | <2 | <2 | <2 | <2 | <2 | <2 | | Chemical Oxygen Demand | mg/L | 10 | 4 | 16 | 43 | 24 | 50 | 14 | 45 | 18 | 10 | 2 | 4 | 5 | 4 | | Total Organic Carbon | mg/L | 4 | 6 | 7 | 12 | 5 | 9 | 4 | 8 | 6 | 6 | 6 | <1 | 1 | 1 | ENVIRONMENTAL RESOURCES MANAGEMENT GREEN VALLEY LANDFILL LTD. Table F5.3 Groundwater Monitoring Results (March 2022) | Parameters | Units | MWX-1 | MWX-2 | MWX-3 | MWX-4 | MWX-5 | MWX-6 | MWX-7 | MWX-8 | MWX-9 | MWX-10 | MWX-11 | MWX-12 | MWX-13 | MWX-14 | |---------------------------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Water Level | mPD | 2.27 | 2.41 | 2.3 | 2.36 | 2.34 | 2.43 | 2.12 | 2.21 | 2.36 | 2.43 | 2.66 | 6.19 | 35.2 | 40.94 | | Bicarbonate Alkalinity as CaCO3 | mg/L | 136 | 333 | 138 | <1 | <1 | <1 | 61 | <1 | 85 | 187 | 81 | 59 | 15 | 11 | | Carbonate Alkalinity as CaCO3 | mg/L | <1 | <1 | <1 | 81 | 87 | 128 | 12 | 67 | 2 | <1 | <1 | <1 | <1 | <1 | | Total Alkalinity as CaCO3 | mg/L | 136 | 333 | 138 | 155 | 163 | 217 | 72 | 104 | 87 | 187 | 81 | 59 | 15 | 11 | | pH Value | pH Unit | 8 | 7.8 | 8.1 | 11.2 | 11.2 | 11.3 | 8.7 | 10.5 | 8.4 | 7.6 | 8.1 | 6.8 | 5.5 | 5.3 | | Electrical Conductivity | μS/cm | 939 | 920 | 945 | 1160 | 1330 | 1310 | 2900 | 2720 | 1460 | 1700 | 395 | 306 | 95 | 99 | | Ammonia as N | mg/L | 0.17 | 0.02 | 1.45 | 5.91 | 3.8 | 3.95 | 6.18 | 11.8 | 3.29 | 0.02 | 0.06 | < 0.01 | 0.11 | < 0.01 | | Chloride | mg/L | 172 | 34 | 212 | 220 | 211 | 192 | 828 | 697 | 296 | 312 | 33 | 23 | 15 | 18 | | Nitrite as N | mg/L | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | 0.55 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | | Reactive Phosphorus as P | mg/L | < 0.01 | 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | 0.02 | < 0.01 | 0.01 | 0.02 | 0.01 | 0.04 | < 0.01 | < 0.01 | | Sulphate as SO4 - Turbidimetric | mg/L | 65 | 120 | 81 | 52 | 119 | 80 | 41 | 73 | 178 | 216 | 56 | 53 | 3 | 4 | | Sulphide as S2 | mg/L | < 0.1 | < 0.1 | < 0.1 | 6.6 | 4.6 | 9.9 | 0.6 | 6.1 | 0.8 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Total Kjeldahl Nitrogen as N | mg/L | 0.3 | 0.1 | 1.7 | 6.8 | 4.4 | 5 | 6.4 | 12.3 | 3.8 | 0.2 | 0.2 | < 0.1 | 0.2 | < 0.1 | | Nitrate as N | mg/L | < 0.01 | 0.88 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | 0.09 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | 0.1 | 0.08 | | Total Nitrogen as N | mg/L | 0.3 | 1 | 1.7 | 6.8 | 4.4 | 5 | 6.4 | 12.9 | 3.8 | 0.2 | 0.2 | < 0.1 | 0.2 | 0.2 | | Boron | μg/L | 140 | 220 | 200 | 170 | 180 | 180 | 690 | 470 | 320 | 160 | 70 | 20 | 20 | 20 | | Calcium | mg/L | 48.2 | 43.8 | 61.1 | 51.8 | 44.5 | 31.9 | 31.3 | 42.1 | 63.8 | 124 | 38 | 22.4 | 0.7 | 0.91 | | Mercury | μg/L | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | Magnesium | mg/L | 8.33 | 41.9 | 3.8 | < 0.05 | < 0.05 | < 0.05 | 14.3 | 0.05 | 6.43 | 11.6 | 2.23 | 3.78 | 0.84 | 0.9 | | Sodium | mg/L | 119 | 35 | 116 | 140 | 159 | 167 | 513 | 378 | 206 | 192 | 31.1 | 23 | 12.9 | 14.5 | | Iron | mg/L | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | < 0.04 | 0.07 | < 0.04 | < 0.04 | 0.29 | 0.11 | < 0.04 | | Potassium | mg/L | 21.3 | 9 | 26.9 | 36.3 | 56.6 | 58.3 | 50.5 | 47 | 36.5 | 14.5 | 8.72 | 2.41 | 3.32 | 3.7 | | Cadmium | μg/L | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | Chromium | μg/L | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Copper | μg/L | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | 1 | <1 | | Lead | μg/L | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Manganese | μg/L | 804 | 355 | 777 | 1 | <1 | <1 | 10 | <1 | 35 | 1850 | 207 | 764 | 122 | 8 | | Nickel | μg/L | <1 | <1 | <1 | 1 | 1 | 2 | <1 | 1 | <1 | <1 | <1 | <1 | <1 | <1 | | Zinc | μg/L | <10 |
192 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | 168 | <10 | 18 | <10 | | Biochemical Oxygen Demand | mg/L | <2 | <2 | <2 | <2 | <2 | <2 | <2 | 5 | <2 | <2 | <2 | 2 | <2 | <2 | | Chemical Oxygen Demand | mg/L | 4 | <2 | 17 | 38 | 28 | 46 | 11 | 29 | 17 | 9 | 8 | 5 | 5 | 3 | | Total Organic Carbon | mg/L | 4 | 4 | 11 | 11 | 9 | 12 | 4 | 11 | 9 | 7 | 4 | 3 | 3 | 3 | ENVIRONMENTAL RESOURCES MANAGEMENT GREEN VALLEY LANDFILL LTD. Figure F5.1 Graphical Presentation for Groundwater Monitoring (MWX-1) Figure F5.2 Graphical Presentation for Groundwater Monitoring (MWX-2) Figure F5.3 Graphical Presentation for Groundwater Monitoring (MWX-3) Figure F5.4 Graphical Presentation for Groundwater Monitoring (MWX-4) Figure F5.5 Graphical Presentation for Groundwater Monitoring (MWX-5) Figure F5.6 Graphical Presentation for Groundwater Monitoring (MWX-6) Figure F5.7 Graphical Presentation for Groundwater Monitoring (MWX-7) Figure F5.8 Graphical Presentation for Groundwater Monitoring (MWX-8) Figure F5.9 Graphical Presentation for Groundwater Monitoring (MWX-9) Figure F5.10 Graphical Presentation for Groundwater Monitoring (MWX-10) Figure F5.11 Graphical Presentation for Groundwater Monitoring (MWX-11) Figure F5.12 Graphical Presentation for Groundwater Monitoring (MWX-12) Figure F5.13 Graphical Presentation for Groundwater Monitoring (MWX-13) Figure F5.14 Graphical Presentation for Groundwater Monitoring (MWX-14) Investigation Reports of Environmental Quality Limit Exceedance #### **Investigation Report of Environmental Quality Limit Exceedance** | Project | South East New Territories (SENT) Landfill Extension | |---------------------|--| | Date | 15 February 2022 | | Time | MWX-4: 14:30 | | | MWX-6: 11:29 | | Monitoring Location | MWX-4, MWX-6 | | Parameter | Chemical Oxygen Demand (COD) | | Limit Levels | MWX-4: >36 mg /L | | | MWX-6: >46 mg /L | | Measured Level | MWX-4: 43 mg /L | | | MWX-6: 50 mg /L | | Possible reason | Groundwater contaminated with leachate is commonly characterized by high COD and ammoniacal-nitrogen levels as a result of degradation of organic matters in the waste. The groundwater quality (ammoniacal-nitrogen) monitoring results at MWX-4 (7.29 mg/L) and MWX-6 (3.86 mg/L) and groundwater quality (COD) monitoring results of the groundwater monitoring wells adjacent to MWX-4 and MWX-6 (MWX-3: 16 mg/L, MWX-5: 24 mg/L and MWX-7: 14 mg/L) are well within the respective limit levels. Hence, there is a low possibility of the elevation of COD levels at MWX-4 and MWX-6 are due to leachate contamination from SENTX operation or at least it is not conclusive to base on these results to demonstrate exceedances were due to leachate contamination. In accordance with Table 4.5b of the updated EM&A Manual, repeat measurement was conducted on 15 March 2022 to confirm findings. Exceedance of COD Limit Level was recorded at MWX-4 (38 mg/L) but no exceedance of COD concentration at MWX-4 (38 mg/L) was measured during the sampling event. MWX-4 show consecutive exceedance of the groundwater quality limit. According to the findings of the desktop review commissioned by GVL and EPD (the Employer) in May 2021 to investigate the potential sources of the elevated methane levels at the perimeter landfill gas monitoring wells at SENTX, pockets of organic matters are identified in the fill materials of the SENTX site upon review of the historical site investigation borehole logs at the Project Site area. It is possible that the elevated COD concentration measured at MWX-4 (with detection of elevated levels of methane (up to 12.2% v/v) and in close proximity to LFG13, which shows elevated methane levels continuous) on 15 February 2022 could be due to localised organic matters within or around the monitoring wells. | | | Due to the presence of influencing factor from non-project source and the COD levels at all other groundwater monitoring wells are within the respective limit level, there is no adequate evidence showing that the COD level exceedances measured at MWX-4 and MWX-6 on 15 February 2022 were deemed to Project-related activities. | |-----------------------------------|--| | Action Taken / Action to be Taken | Examination of environmental performance of the Project will be continued during the weekly inspections. The Contractor is reminded to implement relevant and appropriate mitigation measures according to the updated EM&A Manual to avoid any exceedance of the Action and Limit Levels. ET will continue to closely monitor the groundwater quality monitoring results and collect additional data for investigation and further review, if necessary. | | Remarks | - | Prepared by: Abbey Lau Designation: Environmental Team Date: 21 April 2022 ### **Investigation Report of Environmental Quality Limit Exceedance** | Project | South East New Territories (SENT) Landfill Extension | |---------------------|--| | Date | 15 March 2022 | | Time | 13:04 | | Monitoring Location | MWX-4 | | Parameter | Chemical Oxygen Demand (COD) | | Limit Levels | >36 mg /L | | Measured Level | 38 mg /L | | Possible reason | Groundwater contaminated with leachate is commonly characterized by high COD and ammoniacal-nitrogen levels as a result of degradation of organic matters in the waste. The groundwater quality (ammoniacal-nitrogen) monitoring result at MWX-4 (5.91 mg/L) and groundwater quality (COD) monitoring results of the groundwater monitoring wells adjacent to MWX-4 (MWX-3: 17 mg/L and MWX-5: 28 mg/L) are well within the respective limit levels. Hence, there is a low possibility of the elevation of COD level at MWX-4 is due to leachate contamination from SENTX operation or at least it is not conclusive to base on these results to demonstrate exceedance was due to leachate contamination. | | | In accordance with Table 4.5b of the updated EM&A Manual, repeat measurement was conducted on 11 April 2022 to confirm findings. Exceedance of COD Limit Level was recorded at MWX-4 (40 mg/L) during the sampling event. MWX-4 showed consecutive exceedance of the groundwater quality limit. According to the findings of the desktop review commissioned by GVL and EPD (the Employer) in May 2021 to investigate the | | | potential sources of the elevated methane levels at the perimeter landfill gas monitoring wells at SENTX, pockets of organic matters are identified in the fill materials of the SENTX site upon review of the historical site investigation borehole logs at the Project Site area. It is possible that the elevated COD concentration measured at MWX-4 (with detection of elevated levels of methane (up to 11.6% v/v)) on 15 March 2022 could be due to localised organic matters within or around the monitoring wells and background fluctuation. | | | Due to the presence of influencing factor from non-project source and the COD levels at all other groundwater monitoring wells are within the respective limit level, there is no adequate evidence showing that the COD level exceedance measured at MWX-4 on 15 March 2022 was deemed to Project-related activities. | | | It should also be
noted that although the COD level exceeded the limit level of the EM&A programme, it is still well within the | | | WPCO effluent discharge limit of COD (80 mg/L) and the standard for effluents discharged into the inshore waters of the Junk Bay Water Control Zone as stipulated under Technical Memorandum Standards for Effluents Discharged into Drainage and Sewerage Systems, Inland and Coastal Waters (80 mg/L). The slight exceedance of COD at MWX-4 on 15 March 2022 will not cause adverse water quality impact to the Junk Bay Water Control Zone. | |-----------------------------------|--| | Action Taken / Action to be Taken | Examination of environmental performance of the Project will be continued during the weekly inspections. The Contractor is reminded to implement relevant and appropriate mitigation measures according to the updated EM&A Manual to avoid any exceedance of the Action and Limit Levels. ET will continue to closely monitor the groundwater quality monitoring results and collect additional data for investigation and further review, if necessary. | | Remarks | - | Prepared by: Abbey Lau Designation: Environmental Team Date: 17 May 2022 #### Annex G ## Landfill Gas #### Annex G1 Landfill Gas Monitoring Locations for Service Voids, Utilities and Manholes along the Site Boundary and Within the SENTX Site ### Annex G2 ## Landfill Gas Monitoring Results Table G2.1 Landfill Gas Monitoring Results at Perimeter LFG Monitoring Wells (January 2022) | Location | Water Level | Methane (% | Carbon Dioxide | Oxygen (% (v/v)) | |---------------|-------------|------------|----------------|---| | | (mPD) | (v/v)) | (% (v/v)) | , | | LFG1 | 2.33 | 0.0 | 0.0 | 20.4 | | LFG2 | 2.22 | 0.0 | 0.0 | 20.4 | | LFG3 | 2.38 | 0.0 | 0.1 | 20.2 | | LFG4 | 2.2 | 0.0 | 0.0 | 20.2 | | LFG5 | 2.49 | 0.0 | 0.2 | 10.9 | | LFG6 | 2.16 | 0.0 | 0.0 | 20.3 | | LFG7 | 2.29 | 0.0 | 0.0 | 20.2 | | LFG8 | 2.25 | 0.0 | 0.0 | 20.2 | | LFG9 | 2.22 | 0.0 | 0.0 | 20.3 | | LFG10 | 1.94 | 0.0 | 0.0 | 20.3 | | LFG11 | 2.06 | 0.0 | 0.3 | 11.8 | | LFG12 | 2.02 | 0.0 | 0.0 | 20.0 | | LFG13 | 1.86 | 17.4 | 0.3 | 0.4 | | LFG14 | 1.63 | 0.0 | 0.0 | 19.8 | | LFG15 | 1.87 | 0.0 | 0.1 | 19.5 | | LFG16 | 1.9 | 0.0 | 0.1 | 19.6 | | LFG17 | 2.08 | 0.0 | 0.0 | 20.1 | | LFG18 | 2.21 | 0.0 | 0.1 | 20.1 | | LFG19 | 2.27 | 0.0 | 0.0 | 20.1 | | LFG20 | 2.37 | 0.0 | 2.5 | 13.6 | | LFG21 | 2.53 | 0.0 | 2.3 | 12.5 | | LFG22 | 2.21 | 0.0 | 1.4 | 15.6 | | LFG23 | 11.65 | 0.0 | 2.1 | 18.3 | | LFG24 | 5.99 | 0.0 | 0.7 | 19.4 | | GP1 | Probe bent | 0.0 | 0.1 | 19.9 | | GP2 (shallow) | Probe bent | 0.1 | 0.1 | 20.0 | | GP2 (deep) | Probe bent | 0.1 | 0.1 | 20.0 | | GP3 (shallow) | Probe bent | 0.0 | 0.1 | 20.1 | | GP3 (deep) | Probe bent | 0.0 | 0.1 | 20.1 | | GP4 (shallow) | Probe bent | 0.0 | 0.2 | 20.2 | | GP4 (deep) | Probe bent | 0.0 | 0.1 | 20.2 | | GP5 (shallow) | Probe bent | 0.0 | 0.1 | 20.2 | | GP5 (deep) | 37.47 | 0.0 | 0.1 | 20.2 | | GP6 | 36.70 | 0.0 | 6.5 | 14.4 | | GP7 | 35.48 | 0.0 | 0.1 | 20.1 | | GP12 | Dry | 0.0 | 0.6 | 19.4 | | GP15 | 2.28 | 0.0 | 0.0 | 20.4 | | P7 | 2.26 | 0.0 | 0.0 | 20.3 | | P8 | 2.38 | 0.0 | 0.0 | 20.4 | | P9 | 2.25 | 0.0 | 0.0 | 20.4 | Table G2.2 Landfill Gas Monitoring Results at Perimeter LFG Monitoring Wells (February 2022) | Location | Water Level | Methane (% | Carbon Dioxide | Oxygen (% (v/v)) | |---------------|-------------|------------|----------------|------------------| | | (mPD) | (v/v)) | (% (v/v)) | 30 ((, // | | LFG1 | 2.33 | 0.0 | 0.1 | 20.9 | | LFG2 | 2.27 | 0.0 | 0.1 | 20.9 | | LFG3 | 2.31 | 0.0 | 0.9 | 19.6 | | LFG4 | 2.23 | 0.0 | 0.1 | 20.9 | | LFG5 | 2.49 | 0.0 | 0.3 | 11.9 | | LFG6 | 2.18 | 0.0 | 0.1 | 20.8 | | LFG7 | 2.30 | 0.0 | 0.1 | 20.9 | | LFG8 | 2.24 | 0.0 | 0.1 | 21.0 | | LFG9 | 2.24 | 0.0 | 0.1 | 20.9 | | LFG10 | 1.97 | 0.0 | 0.1 | 20.7 | | LFG11 | 1.97 | 0.0 | 0.2 | 13.9 | | LFG12 | 1.86 | 0.0 | 0.1 | 20.1 | | LFG13 | 1.90 | 6.2 | 0.9 | 0.9 | | LFG14 | 1.67 | 0.0 | 0.1 | 20.6 | | LFG15 | 1.93 | 0.0 | 0.3 | 18.9 | | LFG16 | 1.98 | 0.0 | 0.1 | 20.5 | | LFG17 | 2.04 | 0.0 | 0.1 | 20.9 | | LFG18 | 3.13 | 0.0 | 0.1 | 20.6 | | LFG19 | 3.15 | 0.0 | 0.1 | 20.8 | | LFG20 | 2.05 | 0.0 | 0.7 | 19.2 | | LFG21 | 2.24 | 0.0 | 2.1 | 13.3 | | LFG22 | 2.15 | 0.0 | 1.8 | 12.6 | | LFG23 | 12.41 | 0.0 | 0.9 | 20.0 | | LFG24 | 5.76 | 0.0 | 0.8 | 19.8 | | GP1 | Probe bent | 0.0 | 0.1 | 20.5 | | GP2 (shallow) | Probe bent | 0.0 | 0.1 | 20.6 | | GP2 (deep) | Probe bent | 0.0 | 0.1 | 20.6 | | GP3 (shallow) | Probe bent | 0.0 | 0.1 | 20.7 | | GP3 (deep) | Probe bent | 0.0 | 0.7 | 19.4 | | GP4 (shallow) | Probe bent | 0.0 | 0.2 | 20.7 | | GP4 (deep) | Probe bent | 0.0 | 0.1 | 20.7 | | GP5 (shallow) | Probe bent | 0.0 | 0.1 | 20.8 | | GP5 (deep) | 38.03 | 0.0 | 0.1 | 20.8 | | GP6 | 35.98 | 0.0 | 6.7 | 15.2 | | GP7 | 35.86 | 0.0 | 0.2 | 20.9 | | GP12 | 1.60 | 0.0 | 0.2 | 20.9 | | GP15 | 2.34 | 0.0 | 0.1 | 20.9 | | P7 | 2.18 | 0.0 | 0.1 | 20.9 | | P8 | 2.37 | 0.0 | 0.1 | 20.9 | | P9 | 2.24 | 0.0 | 0.1 | 20.9 | Table G2.3 Landfill Gas Monitoring Results at Perimeter LFG Monitoring Wells (March 2022) | Location | Water Level | Methane (% | Carbon Dioxide | Oxygen (% (v/v)) | |---------------|-------------|------------|----------------|------------------| | | (mPD) | (v/v)) | (% (v/v)) | | | LFG1 | 2.05 | 0.0 | 0.1 | 19.1 | | LFG2 | 1.96 | 0.0 | 0.4 | 19.3 | | LFG3 | 2.1 | 0.0 | 0.0 | 20.5 | | LFG4 | 2.06 | 0.0 | 0.0 | 20.6 | | LFG5 | 2.45 | 0.0 | 0.0 | 20.5 | | LFG6 | 1.96 | 0.0 | 0.0 | 20.4 | | LFG7 | 2.38 | 0.0 | 0.0 | 20.4 | | LFG8 | 2.24 | 0.0 | 0.0 | 20.5 | | LFG9 | 2.17 | 0.0 | 0.0 | 20.4 | | LFG10 | 1.93 | 0.0 | 0.0 | 20.4 | | LFG11 | 2.25 | 0.0 | 0.0 | 20.3 | | LFG12 | 2.19 | 0.0 | 0.0 | 20.2 | | LFG13 | 2.05 | 0.0 | 0.0 | 19.7 | | LFG14 | 1.81 | 0.0 | 0.0 | 20.1 | | LFG15 | 2 | 0.0 | 0.0 | 20.2 | | LFG16 | 2.1 | 0.0 | 0.0 | 20.0 | | LFG17 | 2.28 | 0.0 | 0.0 | 20.0 | | LFG18 | 2.45 | 0.0 | 0.1 | 19.2 | | LFG19 | 2.52 | 0.0 | 0.0 | 19.7 | | LFG20 | 2.54 | 0.0 | 0.4 | 18.5 | | LFG21 | 2.69 | 0.0 | 2.0 | 7.5 | | LFG22 | 2.38 | 0.0 | 0.5 | 18.2 | | LFG23 | 12.53 | 0.0 | 1.4 | 18.4 | | LFG24 | 5.96 | 0.0 | 0.8 | 18.4 | | GP1 | Probe bent | 0.0 | 3.1 | 15.8 | | GP2 (shallow) | Probe bent | 0.0 | 0.1 | 20.2 | | GP2 (deep) | Probe bent | 0.0 | 0.1 | 20.2 | | GP3 (shallow) | Probe bent | 0.0 | 3.3 | 17.3 | | GP3 (deep) | Probe bent | 0.0 | 0.1 | 20.3 | | GP4 (shallow) | Probe bent | 0.0 | 0.2 | 20.3 | | GP4 (deep) | Probe bent | 0.0 | 0.1 | 21.5 | | GP5 (shallow) | Probe bent | 0.0 | 0.1 | 20.4 | | GP5 (deep) | 38 | 0.0 | 0.1 | 20.4 | | GP6 | 36.15 | 0.0 | 0.4 | 19.9 | | GP7 | 35.89 | 0.0 | 0.1 | 19.9 | | GP12 | 1.48 | 0.0 | 0.6 | 18.7 | | GP15 | 2.03 | 0.0 | 0.0 | 20.5 | | P7 | 1.99 | 0.0 | 0.0 | 20.4 | | P8 | 2.11 | 0.0 | 0.0 | 20.4 | | P9 | 1.99 | 0.0 | 0.0 | 20.5 | Table G2.4 Landfill Gas Monitoring Results at Service Voids, Utilities Pits and Manholes (January 2022) | Location | Methane (% (v/v)) | Carbon Dioxide (% (v/v)) | Oxygen (% (v/v)) | |----------|--------------------|---------------------------|------------------------| | UU01 | 0.1 | 0.0 | 20.6 | | UU02 | 0.1 | 0.0 | 20.7 | | UU03 | 0.2 | 0.0 | 20.6 | | UU04 | 0.2 | 0.0 | 20.3 | | UU05 | 0.2 | 0.0 | 20.2 | | UU06 | 0.2 | 0.0 | 20.1 | | UU07 | 0.1 | 0.0 | 20.7 | | UU08 | 0.3 | 0.0 | 20.2 | | UU09 | 0.0 | 0.0 | 20.6 | | UU10 | 0.0 | 0.0 | 20.7 | | UU11 | 0.0 | 0.0 | 20.6 | | UU12 | Voided due to late | st site programme and or | n-going operation work | | UU13 | 0.0 | 0.0 | 20.4 | | UU14 | 0.0 | 0.0 | 20.5 | | UU15 | 0.0 | 0.0 | 20.3 | | UU16 | 0.0 | 0.0 | 20.0 | | UU17 | Voided due to late | st site programme and or | n-going operation work | | UU18 | 0.0 | 0.0 | 20.0 | | UU19 | 0.1 | 0.0 | 20.6 | | UU20 | 0.0 | 0.0 | 20.0 | | UU21 | 0.0 | 0.0 | 19.2 | | UU22 | 0.0 | 0.1 | 19.9 | | UU23 | 0.0 | 0.1 | 19.5 | | UU24 | 0.0 | 0.0 | 19.6 | | UU25 | 0.0 | 0.0 | 19.7 | | UU26 | Inaccessi | ble due to on-going const | ruction work | | UU27 | 0.1 | 0.0 | 20.3 | | UU28 | 0.0 | 0.0 | 19.9 | Table G2.5 Landfill Gas Monitoring Results at Service Voids, Utilities Pits and Manholes (February 2022) | Location | Methane (% (v/v)) | Carbon Dioxide (% (v/v)) | Oxygen (% (v/v)) | |----------|--------------------|--------------------------|------------------------| | UU01 | 0.0 | 0.0 | 21.0 | | UU02 | 0.0 | 0.0 | 20.9 | | UU03 | 0.0 | 0.0 | 21.2 | | UU04 | 0.0 | 0.0 | 21.3 | | UU05 | 0.1 | 0.0 | 20.8 | | UU06 | 0.1 | 0.0 | 20.8 | | UU07 | 0.0 | 0.0 | 21.1 | | UU08 | 0.1 | 0.0 | 20.9 | | UU09 | 0.0 | 0.0 | 20.4 | | UU10 | 0.0 | 0.0 | 20.5 | | UU11 | 0.0 | 0.0 | 20.8 | | UU12 | Voided due to late | st site programme and or | n-going operation work | | UU13 | 0.0 | 0.0 | 19.9 | | UU14 | 0.0 | 0.0 | 20.4 | | UU15 | 0.0 | 0.0 | 20.9 | | UU16 | 0.0 | 0.0 | 20.3 | | UU17 | Voided due to late | st site programme and or | n-going operation work | | UU18 | 0.0 | 0.0 | 21.0 | | UU19 | 0.0 | 0.0 | 21.2 | | UU20 | 0.0 | 0.1 | 20.4 | | UU21 | 0.0 | 0.1 | 20.4 | | UU22 | 0.0 | 0.1 | 20.4 | | UU23 | 0.0 | 0.1 | 20.1 | | UU24 | 0.0 | 0.1 | 20.0 | | UU25 | 0.0 | 0.0 | 20.0 | | UU26 | 0.2 | 0.0 | 21.0 | | UU27 | 0.0 | 0.0 | 20.1 | | UU28 | 0.0 | 0.0 | 19.9 | Table G2.6 Landfill Gas Monitoring Results at Service Voids, Utilities Pits and Manholes (March 2022) | Location | Methane (% (v/v)) | Carbon Dioxide (% | Oxygen (% (v/v)) | |----------|---------------------|--------------------------|-----------------------| | | , ,,,,, | (v/v)) | | | UU01 | 0.0 | 0.0 | 20.7 | | UU02 | 0.0 | 0.0 | 20.9 | | UU03 |
0.1 | 0.0 | 20.2 | | UU04 | 0.1 | 0.0 | 20.2 | | UU05 | 0.0 | 0.0 | 20.8 | | UU06 | 0.0 | 0.0 | 20.9 | | UU07 | 0.3 | 0.0 | 20.7 | | UU08 | 0.0 | 0.0 | 20.3 | | UU09 | 0.0 | 0.0 | 20.6 | | UU10 | 0.0 | 0.0 | 20.3 | | UU11 | 0.0 | 0.0 | 20.2 | | UU12 | Voided due to lates | st site programme and on | -going operation work | | UU13 | 0.0 | 0.0 | 20.0 | | UU14 | 0.0 | 0.0 | 19.6 | | UU15 | 0.0 | 0.0 | 19.8 | | UU16 | 0.0 | 0.0 | 19.7 | | UU17 | Voided due to lates | st site programme and on | -going operation work | | UU18 | 0.0 | 0.0 | 20.4 | | UU19 | 0.2 | 0.0 | 20.4 | | UU20 | 0.0 | 0.0 | 19.8 | | UU21 | 0.0 | 0.0 | 19.7 | | UU22 | 0.0 | 0.1 | 19.8 | | UU23 | 0.0 | 0.1 | 20.0 | | UU24 | 0.0 | 0.0 | 20.3 | | UU25 | 0.0 | 0.0 | 20.2 | | UU26 | 0.0 | 0.0 | 19.7 | | UU27 | 0.0 | 0.0 | 19.4 | | UU28 | 0.0 | 0.0 | 19.5 | Table G2.7 Landfill Gas Bulk Gas Sampling Monitoring Results | Parameters | LFG14 | LFG15 | |-----------------------------------|---------|--------| | Methane (% (v/v)) | 0.0 | 0.0 | | Carbon Dioxide ($\%$ (v/v)) | 0.119 | 0.110 | | Oxygen ($\%$ (v/v)) | 10.2 | 20.1 | | Nitrogen (% (v/v)) | 90.5 | 80.3 | | Carbon Monoxide ($\%$ (v/v)) | < 0.020 | <0.020 | | Hydrogen (% (v/v)) | < 0.020 | <0.020 | | Ethane (ppmv) | <1.0 | <1.0 | | Propane (ppmv) | <1.0 | <1.0 | | Butane (ppmv) | <1.0 | <1.0 | Table G2.8 Flammable Gas Surface Emission Monitoring Results | Time | Coordinates | U | | Temperatur
e (°C) | Direction | Speed | Monitoring
Results | |-------|--------------|------------|-------|----------------------|-----------|-------|-----------------------| | | Latitude (N) | (E) | | | (Deg) | (m/s) | (ppm) | | 14:40 | 22º16′36″ | 114º16'36" | Sunny | 18.8 | 161 | 3.6 | 3 | | 14:50 | 22º16'24" | 114°16′36″ | Sunny | 21.0 | 155 | 3.6 | 6 | #### Annex G3 # Event and Action Plan for Landfill Gas Monitoring Annex G3 Event and Action Plan for Landfill Gas Monitoring | Event | | Action | | |--|--|---|--| | | ET | IEC | Contractor | | Limit Level being exceeded for field monitoring at the perimeter monitoring wells | Investigate the cause(s) of exceedance Prepare the Notification of Exceedance within 24 hours Check monitoring data, all plant, equipment and the Contractor's working methods Inform Contractor, IEC, Project Proponent and EPD (EIAO Authority) whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures required Ensure remedial measures are properly implemented Increase the monitoring frequency to daily if exceedance is due to the Project for monitoring wells in the areas where there is development within 250m of the SENTX Site Boundary and to weekly for other monitoring wells, until no exceedance of limit level | Verify the Notification of Exceedance Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures Audit the effectiveness of the implemented remedial measures | Repeat field measurement to confirm findings Check the performance of landfill gas management system Rectify unacceptable practice Discuss with the ET and IEC and submit proposals for remedial measures to IEC Implement the agreed proposals Amend proposal if appropriate | | Limit Level being
exceeded for the
bulk gas sampling at
the perimeter
monitoring wells | Check and compare the results of field monitoring and laboratory analyse of bulk samples If the results of field monitoring also show exceedance, the action(s) for limit level being exceeded for field monitoring would have been triggered If the results of field monitoring does not show exceedance, the sampling procedures should be checked and if deems necessary, to repeat the monitoring and recalibrate the portable monitoring instruments Notify the above findings to Contractor and IEC | | • Nil | ENVIRONMENTAL RESOURCES MANAGEMENT GREEN VALLEY LANDFILL LTD. | Event | | Action | | |--|--|---|---| | | ET | IEC | Contractor | | Limit Level being
exceeded at the
permanent gas
monitoring system | Investigate the cause(s) of exceedance Prepare the Notification of Exceedance within 24 hours Check the methane gas level at the perimeter monitoring wells, manholes or utilities duct Check monitoring data, all plant, equipment and the Contractor's working methods Inform Contractor, IEC, Project Proponent and EPD (EIAO Authority) whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures required Ensure remedial measures are properly implemented | Verify the Notification of Exceedance Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures Audit the effectiveness of the implemented remedial measures | Evacuate all staff in the concerned building Open the doors and window of all rooms on the ground floor Do not allow staff to go back to the room if methane level is higher than 1% gas Check the performance of the landfill gas management system Rectify unacceptable practice Consider changes of working methods Discuss with the ET and IEC and submit proposals for remedial measures to IEC Implement the agreed proposals Amend proposal if appropriate | | Limit Level being exceeded during surface emission monitoring | Repeat the measurement to confirm findings Investigate the cause(s) of exceedance Prepare the Notification of Exceedance within 24 hours Check monitoring data, all plant, equipment and the Contractor's working methods Inform Contractor, IEC, Project Proponent and EPD (EIAO Authority) whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures required Ensure remedial measures are properly implemented Increase the monitoring frequency to monthly if exceedance is due to the Project until no exceedance of limit level | Verify the Notification of Exceedance Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures Audit the effectiveness of the implemented remedial measures | Check landfill gas management system Rectify unacceptable practice Consider changes of working methods Discuss with the ET and IEC and submit proposals for
remedial measures to IEC Implement the agreed proposals Amend proposal if appropriate | | Event | Action | | | | | | | |---|---|---|---|--|--|--|--| | | ET | IEC | Contractor | | | | | | Limit Level being exceeded at the service voids, utilities pits, manholes and location of vegetation stress | Repeat the measurement to confirm findings Investigate the cause(s) of exceedance Prepare the Notification of Exceedance within 24 hours Check monitoring data, all plant, equipment and the Contractor's working methods Inform Contractor, IEC, Project Proponent and EPD (EIAO Authority) whether the cause of exceedance is due to the Project Discuss with Contractor and IEC for remedial measures required Ensure remedial measures are properly implemented Increase the monitoring frequency to weekly if exceedance is due to the Project until no exceedance of limit level | Verify the Notification of Exceedance Discuss with ET and Contractor on proposed remedial measures Review proposals on remedial measures Audit the implementation of the remedial measures the effectiveness of the implemented remedial measures | Check landfill gas management system Rectify unacceptable practice Discuss with the ET and IEC and submit proposals for remedial measures to IEC Implement the agreed proposals Amend proposal if appropriate | | | | | #### Annex H Cumulative Statistics on Exceedances, Environmental Complaints, Notification of Summons and Status of Prosecutions Table H1 Cumulative Statistics on Exceedances | | | Total No. recorded in this reporting period | Total No. recorded since project | |---|----------|---|----------------------------------| | Air Quality (Dust) | Action | 0 | commencement | | All Quality (Dust) | Limit | 0 | 1 | | Air Quality (Odour) | Action | 0 | 0 | | All Quality (Odour) | Limit | 0 | 0 | | Air Oralita (Enricaione of Thomas) | Limit | 0 | • | | Air Quality (Emissions of Thermal | LIIIII | U | 0 | | Oxidiser) Air Quality (Emissions of Landfill | Limit | 0 | 1 | | Gas Flare) | * | | | | Air Quality (Emissions of Landfill | Limit | 0 | 0 | | Gas Generator) | | | | | Noise | Action | 0 | 0 | | | Limit | 0 | 0 | | Water Quality (Surface Water) | Limit | 0 | 57 | | Water Quality (Leachate) | Limit | 0 | 0 | | Water Quality (Groundwater) | Limit | 3 | 4 | | Landfill Gas (Perimeter Landfill Gas | Limit | 0 | 0 | | Monitoring Wells) | | | | | Landfill Gas (Service Void, Utilities | Limit | 0 | 0 | | and Manholes) | T | 0 | 0 | | Landfill Gas (Permanent Gas
Monitoring System) | Limit | 0 | 0 | Table H2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions | Reporting Period | Cumulative Statistics | | | |---|-----------------------|--------------------------|--------------| | _ | Complaints | Notifications of Summons | Prosecutions | | This Reporting Period (Jan - Mar 2022) | 0 | 0 | 0 | | Total no. received since project commencement | 1 | 0 | 0 |